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INTRODUCTION 
 

Inversion in sNMR is often performed using a deterministic 

scheme (e.g.: Legchenko & Shushakov, 1998; Legchenko & 

Valla, 2002; Mueller-Petke & Yaramanci, 2010). Those 

schemes based on linear (or linearized) inversion offer the 

advantage to be rapid and provide the user with a single model 

to interpret. However, the obtained model represents the most-

likely model in the least-squared sense. Even if they are likely 

close to the actual geological model, uncertainty quantification 

is still lacking. Propagating data uncertainty through the 

covariance matrix is a cost-effective solution (Tarantola & 

Valette, 1982). However, using such approach will only 

represent the propagation of the data uncertainty and not 

encompass the modelling uncertainty. 

Appraisal of uncertainty in geophysical inverse modelling is 

key to an efficient decision-making process (Scheidt et al., 

2018). In sNMR, Andersen et al. (2018) proved that the solution 

to the inverse problem showed large uncertainties, and even 

sometimes water-content/thicknesses correlations. They 

showed that only a Markov chain Monte Carlo (McMC) 

approach was suitable for a reasonable estimation that was able 

to collect all the features of the uncertainty with correlation 

between models parameters. However, they stated that using an 

MCMc approach was approximately 1000 times slower than 

propagating the covariance matrix in the linearized inversion.  

We propose another method to solve the inverse problem and 

estimate the uncertainty that simplifies the Bayesian problem in 

a reduced space to speed-up calculations. This method, based 

on Bayesian Evidential Learning (BEL – Scheidt et al., 2018), 

is well suited for the 1D imaging of the subsurface from 

geophysical data and called BEL1D (Michel et al., 2020). In 

previous works (Michel et al., 2020), we demonstrated that 

BEL1D was efficient, fast and reliable. However, the 

uncertainty resulting from this approach was slightly 

overestimated. Here, we propose the use of Iterative Prior 

Resampling in order to solve this issue.  

 

METHODS 

 
BEL1D (or Bayesian Evidential Learning 1D imaging) is an 

adaptation of Bayesian Evidential Learning (BEL – Scheidt et 

al., 2018) for the direct prediction of 1D models parameters 

based on geophysical data. This implementation of BEL differs 

thus in the way the end-result is the models and not a parameter 

of interest that could be obtained through petrophysics (for 

example).  

The algorithm is simplifying the Bayesian problem in a reduced 

space. It is described extensively in Michel et al. (2020) and can 

be summarized in 7 steps: 

1) Define the prior model space (𝑓(𝒎)) and sample 𝑁 

models (𝒎) out of it. 

2) Use the forward model (eq. 1) to obtain the response 

for each of the 𝑁 models. 

𝒅 = 𝐺(𝒎)   (eq. 1) 

3) If required, reduce the dimensionality of the models 

and the related data using principal component 

analysis (PCA) (eq. 2 and eq. 3). 

𝑃𝐶𝐴(𝒅)
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝒅𝒇   (eq. 2) 

𝑃𝐶𝐴(𝒎)
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝒎𝒇  (eq. 3) 

4) Use canonical correlation analysis (CCA) to obtain a 

statistical relationship between 𝒅𝒇 and 𝒎𝒇 (eq. 4). 

𝐶𝐶𝐴(𝒅𝒇,𝒎𝒇)
𝑦𝑖𝑒𝑙𝑑𝑠
→     (𝒅𝒄,𝒎𝒄) (eq. 4) 

5) In the reduced space, approximate the posterior 

distribution of 𝒎𝒄  using kernel density estimation 

(KDE) for any 𝒅𝒄 (eq. 5). 

𝐾𝐷𝐸(𝒅𝒄,𝒎𝒄)
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝑓(𝒎𝒄|𝒅𝒄) (eq. 5) 

6) Apply the PCA and CCA transformations to the field 

dataset (𝒅𝒐𝒃𝒔) (eq. 6) 

𝐶𝐶𝐴(𝑃𝐶𝐴(𝒅𝒐𝒃𝒔))
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝒅𝒐𝒃𝒔

𝒄  (eq.6) 

SUMMARY 
 

The interpretation of sNMR data is still mainly performed 

using deterministic or stochastic inversion schemes. 

sNMR signal to noise ratio is often low regarding 

electromagnetic noise pollution which coupled to non-

uniqueness makes uncertainty quantification challenging. 

Here, we propose a new Bayesian scheme relying on a 

learning step and a prediction step to perform the 

interpretation of sNMR data including uncertainty 

quantification: BEL1D. With it, it is possible to estimate 

the uncertainty of models parameters from a given dataset 

in a rapid manner compared to stochastic inversion and 

reach an equivalent posterior estimation after iterative 

prior resampling. The learning step can even be used to 

multiple datasets to improve performances with only the 

prediction required. Additionally, BEL1D could be used 

with any geophysical methods. 

Key words: Inversion, Machine Learning, MCMc, 

Uncertainty, BEL. 
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7) Sample models from the posterior distribution 

𝒎𝒑𝒐𝒔𝒕
𝑐 ∈ 𝑓(𝒎𝒄|𝒅𝒐𝒃𝒔

𝑐 ) . Each model can be back 

transformed to the original space (PCA and CCA are 

both linear transformations). 

One of the main advantage of this method is that the field data 

is only necessary from step 6 onward. Therefore, one can see 

BEL1D as a machine learning algorithm, where the training 

consists of describing the Bayesian problem in the reduced 

space and the interference step is the process of extracting the 

posterior model space for a new dataset. This makes for 

extremely fast posterior estimation. 

We introduce Iterative Prior Resampling (IPR) as an efficient 

way to converge towards the posterior similar to the one 

obtained by classical MCMc approaches. IPR is inspired from 

iterative spatial resampling (Mariethoz et al., 2010). 

Algorithmically, we are adding the models sampled from the 

posterior to the prior to re-train BEL1D on a more informed 

prior. This approach enable to overcome issues with large prior 

uncertainties that result in difficulties to extract trends between 

data and models.  

 

RESULTS 

 

In this section, we will discuss some results that we obtained 

using this approach. We will apply BEL1D to a synthetic 

dataset created using MRSMatlab (Mueller-Petke et al., 2016). 

We will use a large prior to force the demonstration that it is 

rather difficult to converge when very few is known in advance 

regarding the model. 

 

Table 1: Description of the benchmark model and associated 

prior 

Layer 

# 

𝑒𝑖 [m] 𝑊𝑖 [%] 𝑇2,𝑖
∗  [ms] 

Min True Max Min True Max Min True Max 

1 1 25 50 1 5 50 5 100 500 

2 1 25 50 1 25 50 5 200 500 

H-S / Inf / 1 10 50 5 50 500 

 

The benchmark model along with the used prior is presented in 

Table 1. The dataset is simulated using a classical 

transmitter/receiver configuration with a 50 m diameter. The 

sampling frequency is 500Hz from 0.005 seconds to 0.5 

seconds. The prior is barely informative, apart from the input 

knowledge that three layers can describe accurately the model. 

By design, the prior has zones where the dataset cannot be 

sensitive to the data; hence, it makes estimations of uncertainty 

even more complex. 

Results after one iteration 

Let us first analyse the results obtained at the first iteration. 

Since the prior uncertainty is rather large, BEL1D is facing 

difficulties to retrieve an efficient correlation between the 

models and the simulated data. However, we are still able to 

reduce significantly the uncertainty on most of the parameters 

(Figure 1). 

From the results at the first iteration, we already see that we are 

mostly sensitive to the water contents. Then, the relaxation 

times and, finally, the layers thicknesses are the least sensitive 

parameters in this configuration. As is also expected, the first 

layer shows a higher uncertainty reduction at the first iteration 

for both the water content and relaxation time than the other 

parameters. This is due to the higher sensitivity of the 

experiment to this layer. 

 

Figure 1: Results obtained from BEL1D with IPR. This graph 

presents the obtained distributions independently, but the 

parameter space is explored jointly in BEL1D. 

Results after applying IPR 

When applying IPR, we are using the information from the 

previous iterations to better constrain the prior. This leads to a 

more coherent reduction of uncertainty. Observing the results 

of the 3rd and 7th (last) iterations (Figure 1), we see that the 

obtained distributions tend towards a more accurate posterior. 

Nonetheless, some parameters are still lacking sensitivity. This 

is the case for the relaxation time of the first layer, where the 

low water content hides this parameter. 

If we analyse the correlation between the model’s parameters 

(Figure 3), we observe that there is a correlation between the 

water content of the second layer and its thickness. This result 

is corroborated by the distributions of the total water content 

(Figure 2). There, we observe that, even though the uncertainty 

on the water content and the thicknesses remains large, we 

reduce significantly the total water content.  

In this figure, we also propose a comparison between (1) the 

results from BEL1D with correlation between parameters taken 

into account and (2) random sampling of the distributions 

obtained through BEL1D in order to lose the parameters 

correlations. We see that the correlation that exists inherently 

between the parameters is crucial to the model estimation. 

 

Figure 2: Total water content estimation. The estimation is 

performed for the correlated case (top – results from BEL1D) 

and simulated for the uncorrelated case (bottom). 
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Finally, we observe that the gain of the latest iterations is 

marginal. Knowing that the latest iterations are also the ones 

that are the longest to compute (more models in the informed 

prior), a user that is interested in a rapid but not especially 

precise estimation of the uncertainty could use three iterations 

to gain rapid insight on the uncertainty. 

 

CONCLUSIONS 
 

BEL1D is a new algorithm that can be used to interpret sNMR 

data in a Bayesian framework. We showed that BEL1D was 

able to recover reasonable uncertainties, even from large prior 

model spaces. Moreover, compared to a deterministic scheme 

with propagation of the uncertainty through linear(ized) 

inversion (Tarantola & Valette, 1982), BEL1D is able to 

provide insight on the full behaviour of the posterior, with 

correlations between the different parameters. This latter is a 

key aspect as it reduces the uncertainty of joint parameters as 

well. 

Using BEL1D on its own provides a coarse estimation of the 

uncertainty (especially when dealing with large priors) but can 

already extract tendencies in the posterior. This iteration is 

basically free, as the training can be performed prior to any 

knowledge of the data characteristics. Then, using IPR enables 

a more precise and accurate estimation of the uncertainty, but 

this approaches requires CPU time. Using few iterations can 

already provide a reasonable uncertainty at a reasonable CPU 

cost. Depending on the degree of precision required, the user 

could use only those few iterations. 
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Figure 3: Illustration of the posterior model space after applying BEL1D with IPR. The yellow distributions are the prior and the blue 

distributions are the posterior after seven iterations of BEL1D. 
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