Article (Scientific journals)
Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians.
Frix, Anne-Noëlle; COUSIN, François; Refaee, Turkey et al.
2021In Journal of Personalized Medicine, 11 (7), p. 602
Peer Reviewed verified by ORBi
 

Files


Full Text
20210625_jpm-11-00602.pdf
Publisher postprint (895.94 kB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
artificial intelligence; lung diseases; precision medicine; radiomics; Medicine (miscellaneous)
Abstract :
[en] Artificial intelligence (AI) has increasingly been serving the field of radiology over the last 50 years. As modern medicine is evolving towards precision medicine, offering personalized patient care and treatment, the requirement for robust imaging biomarkers has gradually increased. Radiomics, a specific method generating high-throughput extraction of a tremendous amount of quantitative imaging data using data-characterization algorithms, has shown great potential in individuating imaging biomarkers. Radiomic analysis can be implemented through the following two methods: hand-crafted radiomic features extraction or deep learning algorithm. Its application in lung diseases can be used in clinical decision support systems, regarding its ability to develop descriptive and predictive models in many respiratory pathologies. The aim of this article is to review the recent literature on the topic, and briefly summarize the interest of radiomics in chest Computed Tomography (CT) and its pertinence in the field of pulmonary diseases, from a clinician's perspective.
Disciplines :
Cardiovascular & respiratory systems
Radiology, nuclear medicine & imaging
Author, co-author :
Frix, Anne-Noëlle ;  Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
COUSIN, François  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service médical de médecine nucléaire et imagerie onco
Refaee, Turkey ;  The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6229 Maastricht, The Netherlands ; Department of Diagnostic Radiology, Faculty of Applied Sciences, Jazan University, Jazan 45142, Saudi Arabia
Bottari, Fabio;  Research and Development, Radiomics, 4000 Liège, Belgium
Vaidyanathan, Akshayaa;  The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6229 Maastricht, The Netherlands ; Research and Development, Radiomics, 4000 Liège, Belgium
DESIR, Colin ;  Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiodiagnostic
Vos, Wim;  Research and Development, Radiomics, 4000 Liège, Belgium
Walsh, Sean;  Research and Development, Radiomics, 4000 Liège, Belgium
Occhipinti, Mariaelena;  Research and Development, Radiomics, 4000 Liège, Belgium
LOVINFOSSE, Pierre ;  Centre Hospitalier Universitaire de Liège - CHU > > Service médical de médecine nucléaire et imagerie onco
Leijenaar, Ralph T H;  Research and Development, Radiomics, 4000 Liège, Belgium
HUSTINX, Roland  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service médical de médecine nucléaire et imagerie onco
MEUNIER, Paul ;  Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiodiagnostic
LOUIS, Renaud ;  Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
Lambin, Philippe ;  The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6229 Maastricht, The Netherlands
GUIOT, Julien  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
More authors (6 more) Less
Language :
English
Title :
Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians.
Publication date :
25 June 2021
Journal title :
Journal of Personalized Medicine
eISSN :
2075-4426
Publisher :
MDPI, Switzerland
Volume :
11
Issue :
7
Pages :
602
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 03 May 2022

Statistics


Number of views
128 (8 by ULiège)
Number of downloads
96 (3 by ULiège)

Scopus citations®
 
38
Scopus citations®
without self-citations
32
OpenCitations
 
10

Bibliography


Similar publications



Contact ORBi