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Abstract: Artificial intelligence (AI) has increasingly been serving the field of radiology over the
last 50 years. As modern medicine is evolving towards precision medicine, offering personalized
patient care and treatment, the requirement for robust imaging biomarkers has gradually increased.
Radiomics, a specific method generating high-throughput extraction of a tremendous amount of
quantitative imaging data using data-characterization algorithms, has shown great potential in
individuating imaging biomarkers. Radiomic analysis can be implemented through the following
two methods: hand-crafted radiomic features extraction or deep learning algorithm. Its application
in lung diseases can be used in clinical decision support systems, regarding its ability to develop
descriptive and predictive models in many respiratory pathologies. The aim of this article is to review
the recent literature on the topic, and briefly summarize the interest of radiomics in chest Computed
Tomography (CT) and its pertinence in the field of pulmonary diseases, from a clinician’s perspective.

Keywords: radiomics; artificial intelligence; lung diseases; precision medicine

1. Introduction

Described as the “high-throughput extraction of large amounts of image features from
radiographic images” [1], radiomics is the subject of much research. This quantitative
instrument is beginning to establish itself as a recognized imaging biomarker and par-
aclinical tool, serving both the fields of diagnosis and prognosis, along with predicting
or monitoring response to treatment. The aim of radiomics is to extract quantitative, ac-
tionable information from standard-of-care medical images (computed tomography (CT),
magnetic resonance imaging (MRI), positron emission tomography (PET), etc.), which are
not easily visible or quantifiable with the naked eye, in order to build a model assessing
clinical outcomes, including diagnostic, prognostic or predictive perspectives, to precisely
identify and describe a pathological entity.

The following two methods can be used to perform a radiomic analysis: hand-crafted
feature processing, or deep learning (DL). Hand-crafted feature (e.g., texture, shape, inten-
sity, wavelet) processing will afford information on a specific targeted area of the imaging
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modality, distinctively from other related data (e.g., clinical, biological, genomic, histo-
logical, or treatment-related data). Contrastingly, deep learning methods will proceed
to an extensive data-driven approach, processing a huge amount of information on the
model of a simplified neural brain network, and without needing prior image segmentation
(Figure 1).
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Figure 1. Traditional radiomics and deep learning approaches. Radiomic analysis workflow for handcrafted features (top)
and deep learning method (bottom).

The basic concepts inherent to radiomics and artificial intelligence are displayed in
Table 1. Some of these concepts will be repeatedly used in the following sections.

As a young and developing tool in medicine, radiomics is still facing challenges that
are limiting its wide use in clinical practice. Those include technical artifacts (inadequacy
between acquisition and reconstruction, and inaccuracy in preprocessing procedures such
as in segmentation), the lack of standard criteria to establish the accuracy of the results in
the training and validation processes, and limited real-world experience in assessing the
impact of quantitative imaging on clinical outcomes and diagnostic algorithm. Despite
these limiting factors, research in the field is extensive, and should possibly and gradually
establish radiomics as a clinical tool of major importance.

Applied to lung diseases, quantitative CT analysis extracts features such as thresh-
old, histogram, and morphologic and texture analysis, and produces a quantifiable and
reproducible evaluation of parenchymal changes. Radiomics has been used in the fields of
nodules and cancer, obstructive and restrictive diseases, and infiltrative diseases (including
idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis, connective tissue-related
interstitial lung disease and combined pulmonary fibrosis and emphysema (CPFE)).

The aim of this narrative review is to report the recent literature, and briefly summarize
the interest of radiomics and Artificial intelligence (AI) in chest CT and their application in
the field of pulmonary diseases, from a clinician’s perspective.
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Table 1. AI and radiomics: basic concepts.

Terminology Used in Radiomics and AI

Artificial intelligence
Wide-ranging branch of computer science, generating complex software that
perform tasks that would typically have required human intelligence, by
sensing and responding to a feature of their environment.

CAD (Computer Aided Detection or Diagnosis)

Technology combining elements of artificial intelligence with radiological and
pathology image processing. Its aim is to assist in the detection and/or
diagnosis of diseases, improving the accuracy of radiologists with a reduction
in time in the interpretation of images.

Radiomics
Method that extracts a large number of quantitative features from radiographic
medical images using data-characterization algorithms, to help in disease
diagnosis and prognosis.

Machine Learning

Field in artificial intelligence studying computer algorithms that improve
automatically through experience, by building a model based on sample data,
known as “training data”, in order to make predictions or decisions.
Supervised learning: The computer receives example inputs and their foreseen
outputs. Its goal is to learn a general and reproducible function that links
inputs to outputs.
Unsupervised learning: The computer receives no labels to the learning
algorithm for previously undetected patterns in a data set, leaving it on its own
to find structure in its input.

Convolutional neural networks

Class of deep neural networks, which have the particularity of being fully
connected networks. It gives them the advantage of understanding the
hierarchical pattern in data and assembling more complex patterns using
smaller and simpler patterns.

Voxel
Single sample, or data point, on a regularly spaced, three-dimensional grid. In
CT scans, the values of voxels are Hounsfield units.
A voxel is a 3D pixel.

ROI (Region of Interest) Image areas containing the information relevant to image processing.

Skew of histogram
Measure of the asymmetry of attenuation distribution.
The lung normal attenuation histogram is skewed to the left.
There is a decreased leftward skewness in IPF.

Kurtosis of histogram Measurement of how sharp an attenuation distribution curve is.
Kurtosis is abnormally low in idiopathic pulmonary fibrosis (IPF).

Threshold measurement

Total count of pixels/voxels above or below a specific attenuation value that
determines a relative volume.
Threshold measures in emphysema quantifies the extent of emphysema
according to a specific index of −950 Hounsfield units (HU).

Texture analysis
Statistical methods that evaluate spatial relationship between voxels in an ROI,
in order to characterize textural features of the parenchyma and give
information about heterogeneity.

AI: Artificial Intelligence, CT: Computed Tomography, ROI: Region of Interest.

2. The Role of Radiomics in Lung Diseases

The application of radiomics in the field of lung diseases could lead to improvements
in the clinical and paraclinical workflow in diagnosis, prognosis, management, follow-up
and monitoring the response to treatment.

2.1. Lung Nodules

Lung nodules appearance provides a substantial clinical challenge, raising the question
of diagnosis, prognosis and management. The detection of small nodules is known to be a
difficult task. Indeed, the current diagnostic classification relies on size and growth rate
as the main differentiators between benign and malignant nodules [2–4]. However, this
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approach is still imperfect and needs to be improved. Furthermore, the final diagnosis still
relies on invasive biopsy.

Different research groups among the quantitative imaging network (QIN) [5] are
currently developing radiomic models to describe nodules or tumors, based on size, shape,
margins, texture and intensity. Their aim is to assess if the lesion is malignant or benign, and
to determine its inherent prognosis, to evaluate its response to treatment and eventually
to correlate imaging with genomics or histology. The application of artificial intelligence
and radiomics in pulmonary nodule management is promising [6]. Studies of interest
concerning radiomics and lung nodules are described in Table 2.

Diagnosis. Apart from differentiating lung cancer from benign pulmonary nodules,
thanks to nodule-size evaluation and texture-based analysis, radiomic analysis also extends
its perspective to histological sub-typing among the same lesion, linking it to genomic
information, and subsequently revealing prognostic and response to treatment evalua-
tions. Several radiomic signatures that are able to accurately classify lung nodules have
been published. For example, Chen et al. [7] defined a four-features radiomic signature,
displaying an 84% accuracy in lung nodule classification. Additionally, the use of vol-
umetric software leads to a more accurate and quantitative nodule sizing. In the same
field, studying the volume doubling time (VTD) can lead to a better assessment of nodule
growth rate. For example, a nodule with a VTD higher than 400–600 days has a 4.1%
probability of malignancy, whereas a VTD lower than 400 days displays a malignancy
probability of 9.7% [8]. Analysis of the NELSON trial results demonstrated that lung
cancer mortality was significantly lower in high-risk patients who underwent volume CT
screening (semi-automated extraction), than among those who underwent no screening [9].
Nodule texture can also be studied, empowering the accuracy with which radiomics can
classify malignant and benign nodules. For example, Ma et al. [10] achieved an accuracy
of 82.7%, and Hawkins et al. [11] demonstrated an accuracy of 80.0%. Other teams also
reached relevant results [12,13]. Mao et al. [14] reported an overall accuracy of 89.8% in the
qualitative diagnosis of small solitary pulmonary nodules (SSPNs), which outperformed
the American College of Radiology (ACR) Lung-RADS approach [15]. Moreover, when
texture analysis was combined to clinical and CT features, Lee et al. [16] demonstrated an
improvement in the model performance (area under the curve, AUC), from 0.79 (clinical
and CT features alone) to 0.93 (texture analysis incorporating clinical and CT features).
Interestingly, there is a good concordance between the diagnostic abilities of radiomics
software using ultra-low-dose chest CT compared to full-dose chest CT for lung nodule risk
assessment, even if those are preliminary results [17]. Furthermore, Maldonado et al. [18]
implemented and validated the BRODERS classifier (benign versus aggressive nodule
evaluation using radiomic stratification), a high-resolution CT (HRCT)-based radiomic
classifier in the characterization of indeterminate pulmonary nodules. Early works on
convolutional neural networks (CNNs) compared to computer-aided detection/diagnosis
(CAD) demonstrated a superiority of the radiomic approach in nodule classification, with
a decrease in false positives, possibly reducing the need of several follow-ups [19–21].
Mehta et al. combined biomarkers, volumetric radiomics, and 3D CNNs to reach an algo-
rithm classifying lung nodules [22]. Concerning histological subtyping, numerous studies
have demonstrated the correlation between radiomic features and histology. For example,
Wu et al. [23] described 53 radiomic features significantly associated with tumor histology,
thus leading to an AUC of 0.72 in predicting the histological subtype. As discussed below
(see “Section 2.2”), the possibility of radiomics to accurately predict the underlying gene
expression of an identified tumor is also gathering considerable attention in recent years.

Prognosis. It has been shown that radiomic analysis performs well in the identification
of nodules that are more at risk of evolution towards cancer. This has direct clinical
implications, as it means shorter follow-up CT imaging and early detection of lung cancer.
According to Digumarthy et al. [24], temporal changes in the radiomic features (process
called delta-radiomics) of subsolid lung nodules indicates malignant etiology over benign.
Indeed, they demonstrated that the radiomic features of benign nodules were stable over
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time, whereas the radiomic features of malignant nodules changed significantly between
the baseline and follow-up CT, thus improving the accuracy up to 70.8% in the distinction
between malignant and benign nodules with follow-up temporal changes.

One of the open questions that still remains is the sensitivity of quantitative imaging,
and the correlation between imaging features computed with different segmentation
algorithms. Indeed, segmentation algorithms ought to be highly reproducible, as the
data extracted will serve for clinical purposes. Moreover, different segmentations might
affect the radiomic features extraction. By performing a multicentric study based on a
common set of reference images, Jayashree et al. [25] demonstrated a high correlation
between groups of features (e.g., size and intensity features), whereas specific features
within these groups did not correlate (e.g., reporting or not the size of airspaces within
the lesion, affecting the mean intensity of the total nodule), uncovering subtle differences
in the approach and calculations among the different centers. More research needs to be
conducted to develop robust segmentation methods to provide accurate and reproducible
nodule segmentation [26].

Table 2. Radiomics and lung nodules.

Study Description Cohort Performance

Chen et al. (2018) [7]

- 750 extracted features, among which
76 relevant features were selected

- 4-feature signature
- Aim: nodule characterization

33 benign CT
42 malignant CT

Benign vs. malignant
Accuracy 84%
Sensitivity 92.85%
Specificity 72.73%

De Koning et al. (2020)
[9]

- 15,792 patients, divided into a
screening group (T0–T1 year–T2
years–T3 years) and a no-screening
group

- Follow-up of 10 years
- Aim: nodule characterization through

volume and VTD

15,792 patients

Benign vs. malignant: impact on mortality
At 10 years, cancer mortality = 2.5
deaths/100,000 persons/years (screening
group) vs. 3.3 deaths/100,000 (no-screening
group)
Cumulative ratio 0.76 (p = 0.01)

Ma et al. (2016) [10]
- 583 extracted features
- Random forest classifier
- Aim: nodule characterization

36 benign CT
94 malignant CT

Benign vs. malignant
Accuracy 82.7%
Sensitivity 80%
Specificity 85.5%

Hawkins et al. (2016)
[11]

- 219 extracted features, among which
23 showed concordance correlation >
0.95

- Aim: nodule characterization

328 benign CT
170 malignant CT

Benign vs. malignant
Accuracy 80%

Huang et al. (2018) [12]
- 1108 extracted features
- Aim: nodule characterization

Training cohort
70 benign CT
70 malignant CT
Validation cohort
26 benign CT
20 malignant CT

Benign vs. malignant
Accuracy 91%
Sensitivity 95%
Specificity 88%

Uthoff et al. (2020) [13]
- Extracted features from nodule and

perinodular parenchyma tissue
- Aim: nodule characterization

Training cohort
289 benign CT
74 malignant CT
Validation cohort
50 benign CT
50 malignant CT

Benign vs. malignant
Accuracy 98%
Sensitivity 100%
Specificity 96%

Mao et al. (2019) [14]

- 385 extracted features
- Comparison of radiomic model versus

model of ACR Lung-RADS
- Aim: nodule characterization

Training cohort
156 benign CT
40 malignant CT
Validation cohort
75 benign CT
23 malignant CT

Benign vs. malignant
Accuracy 89.8%
Sensitivity 81%
Specificity 92.2%
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Table 2. Cont.

Study Description Cohort Performance

Maldonado et al. (2021)
[18]

- 8-feature signature
- Aim: to validate the BRODERS

classifier (benign versus aggressive
nodule evaluation using radiomic
stratification) as a HRCT-based
classifier for indeterminate
pulmonary nodules

Validation cohort
91 malignant CT
79 benign CT

Benign vs. malignant
AUC 0.90
Sensitivity 92.3%
Specificity 62%

Mehta et al. (2021) [22]

- 1018 nodule CTs, malignancy rating
from 1 to 5 according to volume

- Fully supervised and
semi-supervised classifiers

- Aim: to reach an hybrid algorithm to
estimate nodule malignancy by
combining imagery and
biomarkers/volumetric
radiomic features

1018 CTs
Malignancy rating from
1 to 5

Benign vs. malignant
AUC 0.87 on fully supervised 3D CNN +
random forest model (images, biomarkers
and volumetric features)
AUC 0.93 on semi-supervised random forest
(biomarkers only)

Digumarthy et al.
(2019) [24]

- 92 extracted features
- 2 significant features at baseline
- 52 significant features at follow-up
- Aim: nodule characterization

according to temporal changes

31 benign CT
77 malignant CT

Benign vs. malignant according to
temporal changes
AUC 0.741

Lee et al.
(2014) [16]

- Clinical, thin-section CT and
texture features

- Aim: prediction of transient vs.
persistent pattern of nodule

Transient PSNs
39 benign CT
Persistent PSNs
17 benign CT
30 malignant CT

Prediction of persistent part-solid nodules
AUC 0.93 if texture analysis was combined
to clinical and CT features

Autrusseau et al. (2021)
[17]

- >1000 extracted features
- Aim: to compare quantitative and

qualitative concordance of pulmonary
nodule risk assessment by radiomic
software between full-dose (FD) chest
CT and ultra-low-dose (ULD)
chest CT

99 lung nodules

- FD chest CT
imaging

- ULD chest CT
imaging

Concordance between FD and ULD chest CT
in radiomic-guided nodule risk assessment
ICC of 0.82, displaying a good agreement in
malignancy similarity index between ULD
and FD chest CT

CT: Computed Tomography, VTD: Volume Doubling Time, ACR: American College of Radiology, BRODERS: Benign versus aggRessive
nODule Evaluation using Radiomic Stratification, HRCT: High Resolution Computed Tomography, AUC: Area under the Curve, CNN:
Convolutional Nerual Network, ICC: Intraclass correlation coefficient, ULD: Ultra Low Dose, PSNs: Part-solid Nodules, FD: Full Dose.

2.2. Cancer

Lung cancer is still the leading cause of death among neoplastic diseases in men and
women worldwide [27]. The National Lung Cancer Screening Trial (NLST) demonstrated
that CT screening in current and ex-smokers provides a significant survival benefit [28,29].
As of today, biopsies are still needed to establish the diagnosis and status of tumors.
Nevertheless, this procedure is invasive and only reflects the characteristics of the part
of the tumor from which the sample was obtained, considering that some tumors can be
anatomically heterogeneous. Due to technological advances in AI, radiomic analysis could
be seen as a virtual biopsy tool, and could have the potential to diagnose and determine
tumor phenotypes. Radiomics has been used to assess tumor phenotypes using various
imaging modalities, such as CT, MRI and PET CT [30]. Studies of interest, concerning
radiomics and lung cancer, are described in Table 3.

Diagnosis. Several studies have demonstrated the potential of radiomics in lung cancer
diagnosis and staging [23,31–34]. Beyond anatomical characterization, radiomics could
be used to predict the presence of particular mutations in genes. For example, Liu et al.
and Zhang et al. [35,36] established a correlation between CT radiomic features and EGFR
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(epidermal growth factor receptor) mutation, whereas Rios Velazquez et al. [37] created
a radiomic model to classify mutations in pulmonary adenocarcinoma. Weiss et al. [38]
assessed the potential of textural analysis to radiologically differentiate K-RAS muta-
tions from pan-wildtype tumors, reaching an accuracy of 89.6%. In the same perspective,
Tang et al. [39] defined 12 robust radiomic features, generating an immune-pathology
informed model to predict immune modulator status (interesting Cluster of differentiation
3 (CD3) and Programmed death-ligand 1 (PDL1)). Lastly, hypothesizing the fact that
radiomics could provide histopathological analysis, while having the advantage of being
non-invasive, Wu et al. [23] performed radiomic analysis to predict the histopathological
types of non-small cell lung carcinoma (NSCLC), reaching a correlation with tumor histol-
ogy of 0.72 (AUC). Additionally, another study demonstrated that separating ground-glass
and solid CT radiomic features of part-solid nodules was useful in diagnosing the inva-
siveness of lung adenocarcinoma. Their radiomic model based on ground-glass and solid
features yielded an AUC of 0.98 on the test data set, which was significantly higher than five
other models tested (Brock University model, clinical semantic model, volumetric models,
radiomic signature based solely on gross tumor volume (GTV) features, and perinodular
features) [40].

Prognosis. Numerous studies corroborated the correlation between radiomic features
and prognosis, in terms of the survival or occurrence of distant metastases [26,31,41–45].
For instance, Mattonen et al. [46] demonstrated the accuracy of radiomics to predict
local recurrence in patients with early stage NSCLC, treated with stereotactic ablative
radiotherapy. Their results also suggested that radiomics could detect early changes in the
tumor, associated with local recurrence, which would not have been taken into account
by clinicians.

Therapy. The use of radiomics to predict response to therapy was explored by several
research groups, but has not yet been translated to clinical use [47,48]. Coroller et al. [49]
studied pre-treatment radiomics data to determine if they could have predicted the
response after neoadjuvant therapy in patients with locally advanced NSCLC. They
found seven radiomic features that were predictive of residual disease (AUC > 0.6), and
one radiomic feature that was predictive of a complete response (AUC 0.63). Similarly,
Kim et al. [50] used radiomic analysis in combination with conventional clinical features to
predict the response to tyrosine kinase inhibitors (TKI) in epidermal growth factor receptor
(EGFR) mutant NSCLC, achieving a good predictive performance, with a concordance
index of 0.77.

Despite facing limitations inherent to its novelty (see “Section 3”), radiomics is seen as
a revolutionary precision medicine approach in lung cancer. Its applications, as follow, in
the field of research are broad and extensive: diagnosis, staging and prognosis, prediction
of treatment response, and disease monitoring [51]. These characteristics are highly inter-
esting, as lung cancer can face a rapid progression, but studies are still needed to reach
real-life clinical application.

Table 3. Radiomics and lung cancer.

Study Description Cohort Performance

Wu et al. (2016) [23]

- 440 extracted features
- 53 features associated with

tumor histology
- Aim: to predict cancer histopathology

Training cohort
198 malignant CT
Validation cohort
152 malignant CT

Tumor histology correlation
AUC 0.72

Yu et al. (2019) [34]
- 9 relevant features selected
- Aim: to diagnose and predict

pathologic stage in NSCLC

Training cohort
87 NSCLC CT
Validation cohort
58 NSCLC CT

Diagnosis and staging in NSCLC
AUC > 0.70, with predictive accuracy higher
in lung adenocarcinoma than in lung
squamous cell carcinoma
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Table 3. Cont.

Study Description Cohort Performance

Liu et al. (2016) [36]

- 219 extracted radiomic features,
among which 59 robust features
were selected

- Aim: search for correlation with EGFR
mutation status in adenocarcinomas

298 malignant CT

Prediction of mutation status
AUC EGFR+ status prediction 0.647,
improved to 0.709 when adding a
clinical model

Rios Velasquez et al.
(2017) [37]

- 26 relevant features selected
- Aim: search for correlation with

KRAS and EGFR mutation status
in adenocarcinomas

Training cohort
353 malignant CT
Validation cohort
352 malignant CT

Prediction of mutation status
AUC EGFR + versus EGFR− status 0.70
AUC KRAS + versus KRAS− status 0.63
AUC EGFR+ versus KRAS+ status 0.80

Tang et al. (2018) [39]

- Pathology markers studied: CD3
count and %PDL1

- 490 extracted features, among which
12 robust features were selected, then
targeted into 4 features to generate
4 clusters (immune-pathology
informed model)

- Aim: to predict immune modulator
status in NSCLC

Training cohort
114 malignant CT
Validation cohort
176 malignant CT

Prediction of immune modulator status
Favorable outcome in low CT intensity and
high heterogeneity with low PDL 1 and
high CD3

Wu et al. (2020) [40]

- 18 relevant features selected
- Comparison of radiomic models

(ground-glass and solid features) with
other models (Brock model, clinical
semantic and volumetric models)

- Aim: to predict invasiveness of lung
adenocarcinoma by using
ground-glass and solid features from
part-solid nodules

Training cohort
229 NSCLC
Validation cohort
68 NSCLC

Prediction of invasiveness
AUC 0.98 for the model combining
ground-glass and solid features
Improvement of 0.14 in AUC when adding
ground-glass radiomic features to
solid features

Coroller et al. (2015)
[41]

- 445 extracted features, among which
35 relevant features were selected

- Aim: to determine the capability of
radiomic analysis to predict
distant metastasis

Training cohort
98 malignant CT
Validation cohort
84 malignant CT

Prediction of distant metastasis
A multivariate radiomic signature
(3 features) yielded a high prognostic
performance for distant metastasis (CI 0.61)

He et al. (2019) [43]

- 519 extracted features, among which
35 relevant features were selected

- Aim: to predict lymph node
metastasis in resectable NSCLC

Training cohort
423 NSCLC CT
Validation cohort
294 NSCLC CT

Prediction of lymph node metastasis
Good discrimination for the model defining
a radiomics-based predictive score
(C index 0.785)

Ferreira et al. (2018)
[45]

- 2777 extracted features, among which
100 most relevant features
were selected

- Aim: to predict lung cancer
histopathology and metastases using
machine learning models

Training cohort
52 malignant CT
Validation cohort
16 malignant CT

Histology and distant metastasis
AUC lymph nodal metastasis 0.89
AUC distant metastasis 0.97
AUC histopathology 0.92

Mattonen et al. (2016)
[46]

- 104 extracted features, among which
the 5 most relevant features
were selected

- Aim: to assess physicians’ ability to
detect local recurrence versus
radiomic tool

182 malignant CT
Prediction of recurrence after SBRT
AUC 0.85 (radiomic signature of 5 features
predicting local recurrence)
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Table 3. Cont.

Study Description Cohort Performance

Coroller et al. (2016)
[49]

- 15 relevant radiomic features selected
- Aim: to assess if radiomics can predict

response after neoadjuvant
chemoradiation (NCT) in locally
advanced NSCLC

127 malignant CT
Training cohort
80%
Validation cohort
20%

Prediction of response after NCT
AUC for pathologic gross residual disease
prediction (7 features) > 0.6
AUC for pathologic complete response
(1 feature) 0.63
AUC for poor response 0.63 (spherical
disproportionality) or 0.61
(heterogeneous texture)

Kim et al. (2017) [50]

- 37 relevant radiomic features selected
- Aim: to determine if radiomic features

combined to conventional clinical
features improved predictive
performance in prediction of PFS in
EGFR+ adenocarcinoma

48 malignant CT
(NSCLC, EGFR mutant)

Prediction of response to TKI

- Addition of radiomics to clinical
factors improved predictive
performance of response to TKI
(concordance index: combined model
0.77, clinical model 0.69; p < 0.0001)

Lafata et al. (2019) [52]

- 39 extracted features
- Aim: to verify the hypothesis that

lung texture, in addition to lung
density, is partly responsible for
correlation between PFT and
CT imaging

64 malignant CT
(NSCLC)

Prediction of PFTs

- Higher DLCO correlated with dense,
heterogeneous pulmonary tissue (p <
0.002)

- Lower FEV1 correlated with
homogeneous, low attenuating
pulmonary tissue (p < 0.03)

CT: Computed Tomography, NSCLC: Non-small cell lung cancer, AUC: Area under the curve, EGFR: epidermal growth factor receptor,
KRAS: KRAS gene, CD3: Cluster of differentiation 3, PDL1: Programmed death-ligand 1, SBRT: Stereotactic body radiation therapy, TKI:
Tyrosine kinase inhibitor, PFTs: Pulmonary function tests, DLCO: Diffusing capacity for carbon monoxide, FEV1: Forced Expiratory Volume.

2.3. Obstructive Lung Diseases

In current clinical practice, pulmonary function tests are crucial to assess the charac-
teristics of obstructive lung diseases. However, while being useful in assessing respiratory
performance, as well as volume and resistance ranges, they cannot inform the clinician
about the local extent of emphysema or air trapping. Overcoming this anatomical defi-
ciency, quantitative CT analysis can be used, and extensive research has been carried out to
automate the quantification of emphysema or air trapping severity and distribution [53,54],
as well as to characterize airway diseases more precisely [55].

In this way, quantitative CT analysis and radiomics could be applied to various
obstructive lung diseases, such as in the characterization of chronic obstructive pulmonary
disease (COPD) or asthma, the detection of bronchiolitis obliterans, or even in planning
eventual emphysema reduction therapy.

In obstructive pulmonary diseases, the lung texture and density are influenced by
increased air abundance, compared to normal lungs. The origin of this excess of air plethora
can be anatomical (emphysema) or functional (air trapping). In addition, the study of lung
texture and density is highly biased by the respiratory phase [56]. During inspiration, the
CT appearance of emphysema can be characterized by the following two methods: areas
with a parenchyma density < −950 HU (emphysema index: percentage of parenchyma
below attenuation threshold of −950 HU) [57], or areas related to the lowest 15th percentile
(emphysema index: lung voxels below threshold value in HU, for which 15% of all lung
voxels have a decreased attenuation value on the attenuation histogram) [58]. During
expiration, air trapping can be defined as the area with a parenchyma density < −856 HU
on expiratory CT. However, it might be difficult to differentiate low attenuation from air
trapping versus low attenuation from emphysema. To address this issue, Pompe et al. [59]
applied parametric response mapping (PRM), a method using a combination of threshold-
based measures taken simultaneously during inspiratory and expiratory phases on co-
registered CT, allowing a biphasic characterization of voxels.

Parallel to parenchyma characterization, quantitative analysis of airways can be
realized up to the fifth bronchial generation. Quantitative CT metrics of airways include
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the study of wall thickness, area and density, and lumen diameter and area. However,
its use faces a certain number of limitations, as airway metrics are highly influenced by
lung volume, aging and inflammation [60]. Therefore, applying airway metrics in clinical
practice is still at the preliminary stage.

2.3.1. COPD

Diagnosis. Applying radiomics could lead to better COPD characterization and quan-
tification [61,62]. Lynch et al. [63] used an integrative description of the visual and quanti-
tative evaluation of CT images in COPD to determine COPD phenotypes, and classified
them into emphysema-predominant subtypes (six different subclassifications) and airway-
predominant subtypes (two subclassifications). Beyond the classical anatomical character-
ization, several research groups demonstrated the potential of CT radiomics features to
correlate with lung function [52,64].

Prognosis. Cho et al. performed a radiomic analysis to predict survival and apply risk
stratification in COPD, and reached a five-feature model displaying a C-index of 0.774,
accurately identifying patients with an increased risk of mortality [65]. Interestingly, CT
vascular features can also be helpful in the characterization of COPD, as the quantitative
assessment of pulmonary vascular alterations in COPD patients exhibited correlations
with clinical parameters, such as pulmonary function tests (PFTs) and survival, in the The
Korean Obstructive Lung Disease (KOLD) cohort [66].

Therapy. Quantitative CT analysis can also be used to assess the progression of em-
physema in alpha-1-antitrypsin deficiency and the response to augmentation therapy [67].
Moreover, the assessment of lung lesions in emphysema, by CT quantification and perfu-
sion scintigraphy, implements the best prediction of outcome in lung volume reduction
(LVR) as a therapeutic option [68,69].

2.3.2. Asthma

Asthma phenotyping is of utmost importance for disease categorization and personal-
ized treatment. In this context, airway remodeling is seen as a possible imaging biomarker.
Quantitative imaging led to the definition of asthma clusters, which were found to re-
spond differently to the bronchodilator between the different imaging clusters [70]. Further
characterization has been possible with the quantification of air trapping. For example,
Choi et al. [71] found that four radiological clusters had differences in their response to
high-dose inhaled corticosteroids (ICS). Quantitative CT analysis in asthma can also be
used as a novel marker to predict or assess the response to treatment, which can lead to
more personalized therapy [71,72].

2.4. Interstitial Lung Diseases

As a heterogeneous group of pathologically distinct processes, but sometimes radio-
logically overlapping entities, interstitial lung diseases (ILD) can represent a diagnostic
challenge and face an unpredictable clinical course. Combined to biological data and PFTs,
thin-section chest CT is essential in differentiating interstitial lung diseases, evaluating
their severity and evolution over time, and possibly monitoring their response to therapy.
Nevertheless, visual assessments of thin-section CT and traditional PFTs evaluation are
relatively insensitive to slight changes or early disease. Moreover, visual evaluation of
HRCT pattern is highly subjective and variable, even among experts. The finest analysis
of specific radiological patterns, such as ground-glass opacities, honeycombing, traction
bronchiectasis, attenuation and reticular density, and their volumetric distribution and
spatial relationships, can lead to more precise diagnosis. Therefore, the contribution of
radiomics, as a reproducible and accurate imaging tool, is a major issue. Some studies also
reported a strong correlation between radiomic features in ILD and pulmonary function
tests. Studies of interest, concerning radiomics and interstitial lung diseases, are described
in Table 4.
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Diagnosis. Many studies have demonstrated the performance of quantitative CT
analysis and its potential to assess the severity of ILD [73,74]. In IPF, Stefano et al. [75]
demonstrated a strong correlation between radiological features and disease severity
(p = 0.009). In scleroderma-related ILD, Martini et al. [76] used radiomics to detect ILD
in sclerodermic patients and to predict their GAP (Gender, Age, Physiology) stage, as
generally used in ILD evaluation (AUC 0.96). Many teams also determined correlations
between quantitative radiological features and baseline PFTs [77,78]. One remaining
recurrent matter of concern is the discernment between IPF and fibrosing non-specific
interstitial pneumonia (NSIP). A recent study addressed this issue by using a CALIPER tool
(computer-aided lung informatics for pathology evaluation and rating), combining PFTs
and quantitative imaging to significantly discriminate NSIP from IPF [79]. Among other
diagnostic issues, identifying the nature of mediastinal lymphadenopathy without recourse
to a biopsy, in order to differentiate sarcoidosis and tuberculosis, remains challenging.
Lee et al. [80] used quantitative imaging to discriminate sarcoidosis from tuberculosis
lymphadenopathy, displaying significant differences in quantitative CT features between
the two groups. All these studies make us consider the distant utopia of reaching a fully
virtual biopsy, in which no tissue sample would be needed to obtain the same histological
information, even if research and its clinical application are still at a preliminary stage.

Table 4. Radiomics and interstitial lung diseases.

Study Description Cohort Performance

Schniering et al. (2019)
[74]

- 154 radiomic features extracted
- Aim: to evaluate the potential of CT

radiomics features for staging
experimental ILD and assess
transferability to human ILD

66 ILD CT (20 mild ILD
and 46 advanced ILD)

Staging of ILD (proof of concept)
AUC 0.929

Stefano et al. (2020) [75]

- Extraction of 10 HRCT parameters
- Aim: to assess the diagnostic

performance of radiomic features
in IPF

32 IPF CT

Severity of IPF
NL (normally attenuated lung) at -200 HU
demonstrated the strongest correlation with
disease severity (p = 0.009)

Martini et al. (2020) [76]

- 1116 extracted radiomic features
- Aim: to retrospectively evaluate if

radiomics features are able to detect
ILD and distinguish the stages in SSc

66 SSc CT
Training cohort
70%
Validation cohort
30%

Severity and staging of SSc-ILD

- Radiomics features can predict GAP
stage with a sensitivity of 84% and a
specificity of almost 100%. AUC 0.96.

- Correlation of radiomics with GAP
stage (but not with the visually
defined features of ILD-HRCT)

Ungprasert et al. (2017)
[77]

- Extraction of quantitative CT indexes
with CALIPER

- Aim: To evaluate the correlation
between

- Quantitative HRCT analysis with
CALIPER software and pulmonary
function tests (PFTs) in patients with
idiopathic inflammatory myopathies
(IIM)-associated interstitial lung
disease (ILD).

110 ILD CT

- 110 baseline CT
- 110 1-year

follow-up CT

Correlation with PFTs in IIM associated ILD

- Baseline: Ground-glass opacities and
reticular density had a significant
negative correlation with diffusing
capacity for carbon monoxide
(DLCO), total lung capacity (TLC),
and oxygen saturation

- 1 year: changes in total interstitial
abnormalities had a significant
negative correlation with changes in
TLC and oxygen saturation
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Table 4. Cont.

Study Description Cohort Performance

Kim et al. (2015) [78]

- Extraction of quantitative CT indexes
(MLA, variance, skewness,
kurtosis, median)

- Aim: to compare known CT
histogram kurtosis and a
classifier-based quantitative score to
assess baseline severity and change
over time in patients with IPF.

57 IPF patients

- 57 baseline CT
- 57 7-months

follow-up CT

Correlation with baseline lung function and
prediction of evolution in IPF

- All baseline histogram indices (texture
features) and QLF and QILD scores
were correlated well with baseline
FVC and DLCO

- When assessing associations with
changes in FVC and DLCO over time,
only QLF score was statistically
significant (r = −0.57; p < 0.0001 for
FVC and r = −0.34; p = 0.025 for
DLCO), whereas kurtosis was not.

De Giacomi et al. (2017)
[79]

- Extraction of quantitative CT indexes
with CALIPER

- Aim: to use quantitative CT analysis
to differentiate NSIP versus IPF and
assess long-term survival

40 biopsy-confirmed
UIP
20 biopsy-confirmed
NSIP

Differentiation NSIP vs. IPF

- Compared with NSIP, IPF patients
experienced greater functional decline
(CVF, p = 0.02) and radiologic
progression (reticulation volume,
p = 0.048).

- Both baseline and short-term changes
in quantitative radiologic findings
were predictive of mortality.

Lee et al. (2018) [80]

- Aim: to assess quantitative imaging in
the evaluation of lymph nodes in
pulmonary sarcoidosis
and tuberculosis

26 CT from tubrcolosis
patients, 21 CT from
sarcoidosis patients.

Differentiation between tuberculosis and
sarcoidosis LN

- Significant differences in the values of
the Feret’s diameter, perimeter, area,
circularity, mean grey value, SD,
median, skewness, and kurtosis
between tuberculous and sarcoid LNs
(p < 0.05)

Best et al. (2008) [81]

- Extraction of quantitative CT indexes
(MLA, skewness, kurtosis) and visual
scores (fibrosis, GGO, emphysema)

- Aim: to retrospectively evaluate
quantitative CT indexes as predictors
of mortality and describe 12-months
changes in CT in IPF patients

167 IPF patients

- 167 baseline CT
- 167 1-year

follow-up CT

Prediction of mortality and progression
in IPF

- FVC (p = 0.006) and fibrosis (p = 0.002)
were predictors of short-term
mortality

- Fibrosis index (p = 0.03), Mean Lung
attenuation (p = 0.003), skewness
(p < 0.001) and kurtosis (p < 0.001)
predicted disease progression

Maldonado et al. (2014)
[82]

- Extraction of quantitative CT indexes
and their mean
volumetric quantification

- Aim: to verify the hypothesis that
short-term radiological changes may
be predictive of survival by the use of
novel software tool CALIPER
(computer-aided lung informatics for
pathology evaluation and rating)

55 IPF patients

Correlation between CT changes and
mortality in IPF

- Interval change in quantitative
volumetrics (p < 0.05) as quantified by
CALIPER were predictive of survival
after a median follow-up of 2.4 years

Jacob et al. (2017) [83]

- Extraction of quantitative CT indexes
to define a quantitative lung fibrosis
score (QLF)

- Aim: to compare computer algorithm
CALIPER to convention CT and PFTs
for mortality prediction in IPF

283 IPF CT

Prediction of mortality in IPF

- Independent predictors of mortality
were CPI “composite physiologic
index” (p < 0.001) and the following
two CALIPER parameters: pulmonary
vessel volume (p = 0.001) and
honeycombing (p = 0.002)
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Table 4. Cont.

Study Description Cohort Performance

Kim et al. (2011) [84]

- Extraction of quantitative CT indexes
- Aim: to assess the efficacy of

cyclophosphamide in SSc-ILD using
texture-based scores (impact on QLF)

83 SSc-ILD CT

- 83 baseline CT
- 83 1-year

follow-up CT

Evaluate the effectiveness of
cyclophosphamide in SSc-ILD

- Between-treatment
- Difference in whole-lung QLF was

~5% (p = 0.0190).
- Significant associations between

changes in QLF and FVC (r = −0.33),
dyspnea score (r = −0.29), and
consensus visual score (p = 0.0001).

CT: Computed tomography, ILD: Interstitial Lunge disease, HRCT: High resolution computed tomography, AUC: Area under the curve,
IPF: Idiopathic Pulmonary Fibrosis, SSc: Systemic sclerosis, CALIPER: Computer-aided lung informatics for pathology evaluation and
rating, PFTs: Pulmonary function tests, MLA: Mean lung attenuation, QILD: Quantitative Interstitial Lunge disease, NSIP: Nonspecific
interstitial pneumonia, QLF: Quantitative Lung Fibrosis, FVC: Forced vital capacity, CVF: Cobra Venom Factor, SD:standard deviatiosn,
LNs: Lymph nodes, GGO: Groudn Glass Opacity and CPI: composite physiologic index.

Prognosis. The comparison of changes in radiological features led many teams to prove
that radiomic features could predict the evolution of lung function, disease progression or
mortality in ILD. In their study, by evaluating quantitative CT indexes and lung function,
Best et al. [81] showed that forced vital capacity (FVC) and fibrosis index were predictors
of short-term mortality in IPF, whereas more precise features (fibrosis index, mean lung
attenuation, skewness and kurtosis) predicted disease progression. This is in line with
the findings of Kim et al. [78], who demonstrated that quantitative lung fibrosis (QLF)
score correlated well with changes in PFTs and disease progression in IPF. In the same
perspective, other teams [82,83] used the CALIPER tool (computer-aided lung informatics
for pathology evaluation and rating) to predict survival in IPF.

Therapy. Concerning the monitoring of response to therapy in ILD, few studies are
currently available. Proving the usefulness of radiomics in this precise field, Kim et al. [84]
assessed the efficacy of cyclophosphamide in scleroderma-related ILD, by using texture-
based scores determining the QLF score. They established a significant change in QLF
score after treatment, supporting the efficacy of cyclophosphamide over placebo, and
also demonstrated a significant association between changes in QLF score, forced vital
capacity (FVC) and dyspnea score. These few results, already promising, are the first signs
of what radiomics could bring in the precise and quantifiable evaluation of the response to
treatment in ILD.

2.5. Vascular Lung Diseases

The application of artificial intelligence in the field of vascular lung diseases is still at
the preliminary stages. Only a few studies report results and mainly focus on pulmonary
hypertension (PH). For example, Kiely et al. [85] managed to apply artificial intelligence
in order to achieve a predictive model, using existing and real-world data to determine
patients at high risk of idiopathic pulmonary hypertension, resulting in 99.99% specificity
and 14.10% sensitivity.

However, it is strongly believed that AI and machine learning could be of high interest
in the diagnostic and prognostic classification of PH. For instance, one area of research
is the accurate segmentation of cardiac chambers on MRI or CT, and the segmentation of
the pulmonary vascular network [86,87]. One notable current limitation of imaging is the
inability to properly assess distal pulmonary arterial vasculature, which is the pathological
site interesting pulmonary arterial hypertension (PAH). Therefore, applying radiomics on
CT or MRI imaging could lead to a more accurate evaluation of pulmonary perfusion [88].
Lastly, as PH diagnosis still relies on right heart catheterization (RHC), any non-invasive
diagnostic tool could be highly welcomed. Lungu et al. [89] hypothesized that combining
mathematical and cardiopulmonary metrics with AI classifiers could add diagnostic value.
Their classifier showed that 92% of patients were correctly classified, which led to the
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conclusion that combining the PH biomarker with AI classification algorithms enhanced
the diagnostic performance of non-invasive techniques in PH.

2.6. Pleural Diseases

The rare studies exploring the pleura from a radiomic perspective only concern pleural
tumor invasion in lung cancer. For example, Yang et al. [90] exposed a strong association
between tumor imaging phenotype, as defined by radiomic features, and dry pleural
dissemination. Studies are still needed in the field of radiomics, applied to benign or
malignant primitive pleural diseases.

3. Challenges and Limitations

Being a novel and developing tool in medicine, radiomics is still inevitably facing
challenges, limiting its wide use in clinical practice. These pitfalls can be found in most of
the following steps of the radiomic workflow: from image acquisition to image segmenta-
tion, feature extraction, statistical analysis, and implementation in algorithms and real-life
experience [51,91].

- Image acquisition: There is a disparity in acquisition parameters, as there are no real
standardized imaging protocols. For example, there are differences in dose administra-
tion, reconstruction kernels, section thickness between the different imaging centers,
and modalities. Moreover, variations in inspiratory effort can modify lung attenuation
and volume, possibly leading to misinterpretation, affecting both threshold- and
histogram-based quantification.

- Image segmentation: There is an inevitable intra- and inter-observer variability in
manual segmentation methods, which could be improved by the use of semi- or fully
automatic techniques. Similarly, intra-lesional heterogeneity can be a real challenge
for accurate segmentation, as well as motion artifacts or noisy background due to
low-dose scanning.

- Feature extraction: There is a risk of confusion between the signal of the ROI and the
background noise, which could be improved by the development of filtering tech-
niques, or by resampling strategies. Moreover, feature selection is facing disparities
imputable to human error, which could be improved by the implementation of deep
learning methods such as CNN.

- Statistical analysis: There is a disproportion between the tremendous number of
possible features and the small population, generating a high rate of false positives
(elegantly called “curse of dimensionality” [51]), which could be improved by the
development of statistical corrections or cross-validation.

- Implementation and reproducibility: There is a lack of reproducibility between re-
search groups, which could be improved by increasing the access to full data, extrac-
tion software and statistical methods. Another example of a limitation is misinterpre-
tation from a trained algorithm. Indeed, a specific algorithm can only define a disease
for which it was trained, possibly leading to the false suggestion of diseases sharing
some common features.

- Robustness and Explainability of Artificial Intelligence: There are numerous issues
to be addressed, concerning the application of AI in real life. For example, the use
of extensive data in the development of machine learning models does not imply
the automatic understanding of underlying mechanisms linking data. Moreover, AI
systems can face concerns regarding reliability, as they may accumulate edge cases
that are not taken into account by the algorithm. Lastly, the question of data protection
must be raised, as potential matters concerning confidentiality can surface [92].

Recognition of the current limitations of radiomics is essential to avoid misleading to in-
appropriate or non-reproducible models. For example, in this perspective, Ibrahim et al. [93]
proposed a workflow for accurate radiomic analysis. Standardization of imaging acquisi-
tion, segmentation, feature extraction, and calculation is fundamental to ensure robustness
and dissemination of radiomics as a paraclinical tool in medicine.
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4. Conclusions and Perspective

At the era of precision medicine, where personalized work-up and treatment according
to individual variability is unavoidable, imaging biomarkers integrating information from
extensive data is seen as a revolution. Radiomics is cementing its position as a promising
tool in lung diseases, integrating data from imaging, clinical, histological and genomic
information. Significant effort is being put into the investigation and resolution of its
inherent limitations. The research is extensive and aims to progressively lead to its clinical
application and routine utilization in real-life practice.
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Abbreviations

AI Artificial Intelligence
CT Computed Tomography
MRI Magnetic Resonance Imaging
PET Positron Emission Tomography
DL Deep Learning
IPF Idiopathic Pulmonary Fibrosis
CPFE Combined Pulmonary Fibrosis and Emphysema
QIN Quantitative Imaging Network
VTD Volume Doubling Time
SSPNs Small Solitary Pulmonary Nodules
AUC Area Under the Curve
HRCT High-Resolution Computed Tomography
CNN Convolutional Neural Networks
CAD Computer-Aided Detection/Diagnosis
NLST National Lung Screening Trial
EGFR Epidermal Growth Factor Receptor
NSCLC Non-Small Cell Lung Carcinoma
GTV Gross-Tumor Volume
TKI Tyrosine Kinase Inhibitors
COPD Chronic Obstructive Pulmonary Disease
HU Hounsfield Unit
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PRM Parametric Response Mapping
PFTs Pulmonary Function Tests
LVR Lung Volume Reduction
ICS Inhaled Corticosteroids
ILD Interstitial Lung Diseases
NSIP Non-Specific Interstitial Pneumonia
CALIPER Computer-Aided Lung Informatics for Pathology Evaluation and Rating
FVC Forced Vital Capacity
QLF Quantitative Lung Fibrosis
PH Pulmonary Hypertension
PAH Pulmonary Arterial Hypertension
RHC Right Heart Catheterization
ROI Region of Interest
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