[en] Water shortage and soil nutrient depletion are considered the main factors limiting crops productivity in the Mediterranean region characterized by longer and frequent drought episodes. In this study, we investigated the interactive effects of P fertilizer form and soil moisture conditions on chickpea photosynthetic activity, water and nutrient uptake, and their consequent effects on biomass accumulation and nutrient use efficiency. Two P fertilizer formulas based on orthophosphates (Ortho-P) and polyphosphates (Poly-P) were evaluated under three irrigation regimes (I1: 75% of field capacity, I2: 50% FC and I3: 25% FC), simulating three probable scenarios of soil water content in the Mediterranean climate (adequate water supply, medium, and severe drought stress), and compared to an unfertilized treatment. The experiment was conducted in a spilt-plot design under a drip fertigation system. The results showed significant changes in chickpea phenotypic and physiological traits in response to different P and water supply regimes. Compared with the unfertilized treatment, the stomata density and conductance, chlorophyll content, photosynthesis efficiency, biomass accumulation, and plant nutrient uptake were significantly improved under P drip fertigation. The obtained results suggested that the P fertilizer form and irrigation regime providing chickpea plants with enough P and water, at the early growth stage, increased the stomatal density and conductance, which significantly improved the photosynthetic performance index (PIABS) and P use efficiency (PUE), and consequently biomass accumulation and nutrient uptake. The significant correlations established between leaf stomatal density, PIABS, and PUE supported the above hypothesis. We concluded that the Poly-P fertilizers applied in well-watered conditions (I1) performed the best in terms of chickpea growth improvement, nutrient uptake and use efficiency. However, their effectiveness was greatly reduced under water stress conditions, unlike the Ortho-P form which kept stable positive effects on the studied parameters.
Ryan, J. & Sommer, R. Soil fertility and crop nutrition research at an international center in the Mediterranean region: Achievements and future perspective. Arch. Agron. Soil Sci. 58, 41–54 (2012). DOI: 10.1080/03650340.2012.693601
Sardans, J. et al. Long-term drought decreases ecosystem C and nutrient storage in a Mediterranean holm oak forest. Environ. Exp. Bot. 177, 104135 (2020). DOI: 10.1016/j.envexpbot.2020.104135
Fahad, S. et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 8, 1147 (2017). DOI: 10.3389/fpls.2017.01147
Khan, N. et al. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci. Rep. 9, 2097 (2019). DOI: 10.1038/s41598-019-38702-8
Hessini, K. et al. Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora. Environ. Exp. Bot. 67, 312–319 (2009). DOI: 10.1016/j.envexpbot.2009.06.010
Jameel, S., Hameed, A. & Shah, T. M. Investigation of distinctive morpho-physio and biochemical alterations in desi chickpea at seedling stage under irrigation, heat, and combined stress. Front. Plant Sci. 12, 692745 (2021). DOI: 10.3389/fpls.2021.692745
Abid, M. et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci. Rep. 8, 4615 (2018). DOI: 10.1038/s41598-018-21441-7
Toscano, S., Farieri, E., Ferrante, A. & Romano, D. Physiological and biochemical responses in two ornamental shrubs to drought stress. Front. Plant Sci. 7, 645 (2016). DOI: 10.3389/fpls.2016.00645
Hermans, C., Hammond, J. P., White, P. J. & Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 11, 610–617 (2006). DOI: 10.1016/j.tplants.2006.10.007
Hou, E., Lu, X., Jiang, L., Wen, D. & Luo, Y. Quantifying soil phosphorus dynamics: A data assimilation approach. J. Geophys. Res. Biogeosci. 124, 2159–2173 (2019). DOI: 10.1029/2018JG004903
Smeck, N. E. Phosphorus dynamics in soils and landscapes. Geoderma 36, 185–199 (1985). DOI: 10.1016/0016-7061(85)90001-1
Ikhajiagbe, B. et al. Major phosphorus in soils is unavailable, yet critical for plant development. Not. Bot. Horti Agrobot. Cluj-Napoca 12, 500–535 (2020).
Roberts, T. L. & Johnston, A. E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 105, 275–281 (2015). DOI: 10.1016/j.resconrec.2015.09.013
Veneklaas, E. J. et al. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 195, 306–320 (2012). DOI: 10.1111/j.1469-8137.2012.04190.x
Huang, J., Xu, C. C., Ridoutt, B. G., Wang, X. C. & Ren, P. A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 159, 171–179 (2017). DOI: 10.1016/j.jclepro.2017.05.008
Torres-Dorante, L. O., Claassen, N., Steingrobe, B. & Olfs, H. W. Fertilizer-use efficiency of different inorganic polyphosphate sources: Effects on soil P availability and plant P acquisition during early growth of corn. J. Plant Nutr. Soil Sci. 169, 509–515 (2006). DOI: 10.1002/jpln.200520584
Frossard, E., Condron, L. M., Oberson, A., Sinaj, S. & Fardeau, J. C. Processes governing phosphorus availability in temperate soils. J. Environ. Qual. 29, 15–23 (2000). DOI: 10.2134/jeq2000.00472425002900010003x
McBeath, T. M., Lombi, E., McLaughlin, M. J. & Bünemann, E. K. Polyphosphate-fertilizer solution stability with time, temperature, and pH. J. Plant Nutr. Soil Sci. 170, 387–391 (2007). DOI: 10.1002/jpln.200625166
Xu, M. et al. Soil available phosphorus and moisture drive nutrient resorption patterns in plantations on the Loess Plateau. For. Ecol. Manage. 461, 117910 (2020). DOI: 10.1016/j.foreco.2020.117910
Meier, S. et al. Interactive role between phosphorus utilization efficiency and water use efficiency. A tool to categorize wheats co-adapted to water and phosphorus limiting conditions. Agric. Water Manag. 248, 106765 (2021). DOI: 10.1016/j.agwat.2021.106765
Torres-Dorante, L. O., Claassen, N., Steingrobe, B. & Olfs, H. W. Hydrolysis rates of inorganic polyphosphates in aqueous solution as well as in soils and effects on P availability. J. Plant Nutr. Soil Sci. 168, 352–358 (2005). DOI: 10.1002/jpln.200420494
Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y. & Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 9, 1606 (2018). DOI: 10.3389/fmicb.2018.01606
Weeks, J. J. & Hettiarachchi, G. M. A review of the latest in phosphorus fertilizer technology: Possibilities and pragmatism. J. Environ. Qual. 48, 1300–1313 (2019). DOI: 10.2134/jeq2019.02.0067
Gao, Y., Wang, X., Shah, J. A. & Chu, G. Polyphosphate fertilizers increased maize (Zea mays L.) P, Fe, Zn, and Mn uptake by decreasing P fixation and mobilizing microelements in calcareous soil. J. Soils Sediments 20, 1–11 (2020). DOI: 10.1007/s11368-019-02375-7
Chtouki, M., Naciri, R., Garré, S., Nguyen, F. & Oukarroum, A. Chickpea plant responses to polyphosphate fertiliser forms and drip fertigation frequencies: Effect on photosynthetic performance and phenotypic traits. Funct. Plant Biol. 10.1071/fp21035 (2021). DOI: 10.1071/fp21035
Kusi, N. Y. O., Stevens, W. B., Sintim, H. Y., Garcia y Garcia, A. & Mesbah, A. O. Phosphorus fertilization and enhanced efficiency products effects on sugarbeet. Ind. Crops Prod. 171, 113887 (2021). DOI: 10.1016/j.indcrop.2021.113887
Gao, Y. J., Kang, L. F. & Chu, G. X. Polymerization degree and rate of polyphosphate fertilizer affected the availability of phosphorus, Fe, Mn and Zn in calcareous soil. J. Plant Nutr. Fertil. 24, 1294–1302 (2018).
Khasawneh, F. E., Hashimoto, I. & Sample, E. C. Reactions of ammonium ortho- and polyphosphate fertilizers in soil: II. Hydrolysis and reactions with soil. Soil Sci. Soc. Am. J. 43, 52–58 (1979). DOI: 10.2136/sssaj1979.03615995004300010009x
Gunes, A. et al. Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre- and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environ. 52, 368–376 (2006). DOI: 10.17221/3454-PSE
Singh, R. K., Singh, M. K. & Prakash, R. Varietal performance of chickpea under harsh edaphic and environments of Bundelkhand for subsistence farmers. Int. J. Plant Sci. 13, 180–182 (2018). DOI: 10.15740/HAS/IJPS/13.1/180-182
Rani, A. et al. Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front. Plant Sci. 10, 1759 (2020). DOI: 10.3389/fpls.2019.01759
Macil, P. J., Ogola, J. B. O., Odhiambo, J. J. O. & Lusiba, S. G. The response of some physiological traits of chickpea (Cicer arietinum L.) to biochar and phosphorus fertilizer application. Legum. Res. 40, 299–305 (2017).
Dos Santos Fonseca, J. H. et al. Chickpea production in response to fertilization with zinc and doses of phosphorus. Comun. Sci. 11, 3106 (2020). DOI: 10.14295/cs.v11i0.3106
He, Y., Shen, Q., Kong, H., Xiong, Y. & Wang, X. Effect of soil moisture content and phosphorus application on phosphorus nutrition of rice cultivated in different water regime systems. J. Plant Nutr. 27, 2259–2272 (2004). DOI: 10.1081/PLN-200034718
He, J. et al. Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybean subjected to water shortage. Environ. Exp. Bot. 166, 103816 (2019). DOI: 10.1016/j.envexpbot.2019.103816
Gerosa, G., Marzuoli, R., Bussotti, F., Pancrazi, M. & Ballarin-Denti, A. Ozone sensitivity of Fagus sylvatica and Fraxinus excelsior young trees in relation to leaf structure and foliar ozone uptake. Environ. Pollut. 125, 91–98 (2003). DOI: 10.1016/S0269-7491(03)00094-0
Strasser, R. J., Tsimilli-Michael, M. & Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Advances in Photosynthesis and Respiration: Chlorophyll Fluorescence, a Signature of Photosynthesis (ed. Papageorgiou, G. C.) 321–362 (Springer, 2004). DOI: 10.1007/978-1-4020-3218-9_12
O’Dell, J. W. Determination of total Kjeldahl nitrogen by semi-automated colorimetr. In Methods for the Determination of Metals in Environmental Samples (ed. O’Dell, J. W.) 449–463 (Elsevier, 1996). DOI: 10.1016/B978-0-8155-1398-8.50025-2
Liu, C., Dang, X., Mayes, M. A., Chen, L. & Zhang, Y. Effect of long-term irrigation patterns on phosphorus forms and distribution in the brown soil zone. PLoS ONE 12, 1–16 (2017).
Ha, Y. L., Storkon, J. & Pariza, M. W. Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res. 50, 1097–1101 (1990).
Leport, L. et al. Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. Eur. J. Agron. 11, 279–291 (1999). DOI: 10.1016/S1161-0301(99)00039-8
Kashiwagi, J. et al. Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Res. 170, 47–54 (2015). DOI: 10.1016/j.fcr.2014.10.003
Huang, B. & Fry, J. D. Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Sci. 38, 1017–1022 (1998). DOI: 10.2135/cropsci1998.0011183X003800040022x
Pang, J., Turner, N. C., Du, Y. L., Colmer, T. D. & Siddique, K. H. M. Pattern of water use and seed yield under terminal drought in chickpea genotypes. Front. Plant Sci. 8, 1375 (2017). DOI: 10.3389/fpls.2017.01375
Zhao, W. et al. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 12, 2127 (2020). DOI: 10.3390/w12082127
Sekiya, N. & Yano, K. Stomatal density of cowpea correlates with carbon isotope discrimination in different phosphorus, water and CO2 environments. New Phytol. 179, 799–807 (2008). DOI: 10.1111/j.1469-8137.2008.02518.x
Dick, R. P. & Tabatabai, M. A. Factors affecting hydrolysis of polyphosphates in soils. Soil Sci. 143, 97–104 (1987). DOI: 10.1097/00010694-198702000-00003
Wang, X., Gao, Y., Hu, B. & Chu, G. Comparison of the hydrolysis characteristics of three polyphosphates and their effects on soil phosphorus and micronutrient availability. Soil Use Manage. 35, 664–674 (2019). DOI: 10.1111/sum.12526
Sharma, M. et al. A significant increase in rhizosheath carboxylates and greater specific root length in response to terminal drought is associated with greater relative phosphorus acquisition in chickpea. Plant Soil 460, 51–68 (2021). DOI: 10.1007/s11104-020-04776-x
Liu, X. et al. Alterations in leaf photosynthetic electron transport in Welsh onion (Allium fistulosum L.) under different light intensity and soil water conditions. Plant Biol. 23, 83–90 (2021). DOI: 10.1111/plb.13165
Pingoliya, K. K., Mathur, A. K., Dotaniya, M. L. & Dotaniya, C. K. Impact of phosphorus and iron on protein and chlorophyll content in chickpea (Cicer arietinum L.). Legum. Res. Int. J. 38, 558 (2015). DOI: 10.5958/0976-0571.2015.00137.X
Xu, Z. & Zhou, G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59, 3317–3325 (2008). DOI: 10.1093/jxb/ern185
Caine, R. S. et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytol. 221, 371–384 (2019). DOI: 10.1111/nph.15344
Harrison, E. L., Arce Cubas, L., Gray, J. E. & Hepworth, C. The influence of stomatal morphology and distribution on photosynthetic gas exchange. Plant J. 101, 768–779 (2020). DOI: 10.1111/tpj.14560
Carstensen, A. et al. The impacts of phosphorus deficiency on the photosynthetic electron transport chain1. Plant Physiol. 177, 271–284 (2018). DOI: 10.1104/pp.17.01624
Carstensen, A., Szameitat, A. E., Frydenvang, J. & Husted, S. Chlorophyll a fluorescence analysis can detect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (Hordeum vulgare L.). Plant Soil 434, 79–91 (2019). DOI: 10.1007/s11104-018-3783-6
Livorness, J. & Smith, T. D. The role of manganese in photosynthesis. In Biochemistry (eds Livorness, J. & Smith, T. D.) 1–44 (Springer, 2007).
Laporte, D. et al. Copper-induced concomitant increases in photosynthesis, respiration, and C, N and S assimilation revealed by transcriptomic analyses in Ulva compressa (Chlorophyta). BMC Plant Biol. 20, 25 (2020). DOI: 10.1186/s12870-019-2229-5
Gao, F. & Dubos, C. Transcriptional integration of plant responses to iron availability. J. Exp. Bot. 72, 2056–2070 (2021). DOI: 10.1093/jxb/eraa556
Zhao, Y. et al. Effects of various phosphorus fertilizers on maize yield and phosphorus uptake in soils with different pH values. Arch. Agron. Soil Sci. 10.1080/03650340.2021.1926997 (2021). DOI: 10.1080/03650340.2021.1926997
Ma, C. et al. Using phosphate fertilizer to reduce emitter clogging of drip fertigation systems with high salinity water. J. Environ. Manage. 263, 110366 (2020). DOI: 10.1016/j.jenvman.2020.110366
Kang, L., Zhang, G. & Chu, G. Split delivering phosphorus via fertigation to a calcareous soil increased P availability and maize yield (Zea mays L.) by reducing P fixation. J. Soils Sediments 21, 2287–2300 (2021). DOI: 10.1007/s11368-021-02914-1
Shi, Q. et al. Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L. Plant Soil 447, 99–116 (2020). DOI: 10.1007/s11104-019-04041-w
Cetner, M. D., Kalaji, H. M., Borucki, W. & Kowalczyk, K. Phosphorus deficiency affects the i-step of chlorophyll a fluorescence induction curve of radish. Photosynthetica 58, 671–681 (2020). DOI: 10.32615/ps.2020.015
Malhotra, H., Vandana, S. & Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance (ed. Hasanuzzaman, M.) 171–190 (Springer, 2018). DOI: 10.1007/978-981-10-9044-8_7
Suriyagoda, L. D. B., Ryan, M. H., Renton, M. & Lambers, H. Plant responses to limited moisture and phosphorus availability: A meta-analysis. Adv. Agron. 124, 143–200 (2014). DOI: 10.1016/B978-0-12-800138-7.00004-8
Nielsen, K. L., Eshel, A. & Lynch, J. P. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J. Exp. Bot. 52, 329–339 (2001).
Fredeen, A. L., Rao, I. M. & Terry, N. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol. 89, 225–230 (1989). DOI: 10.1104/pp.89.1.225
Israr, D. et al. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiol. Biochem. 108, 304–312 (2016). DOI: 10.1016/j.plaphy.2016.07.023
Fotiadis, S., Koutroubas, S. D. & Damalas, C. A. Phosphorus and potassium uptake, translocation, and utilization efficiency in chickpea under Mediterranean conditions. Nutr. Cycl. Agroecosyst. 116, 313–328 (2020). DOI: 10.1007/s10705-020-10047-z