[en] AimsDietary cholesterol and palmitic acid are risk factors for cardiovascular diseases (CVDs) affecting the arteries and the heart valves. The ionizing radiation that is frequently used as an anticancer treatment promotes CVD. The specific pathophysiology of these distinct disease manifestations is poorly understood. We, therefore, studied the biological effects of these dietary lipids and their cardiac irradiation on the arteries and the heart valves in the rabbit models of CVD.Methods and ResultsCholesterol-enriched diet led to the thickening of the aortic wall and the aortic valve leaflets, immune cell infiltration in the aorta, mitral and aortic valves, as well as aortic valve calcification. Numerous cells expressing α-smooth muscle actin were detected in both the mitral and aortic valves. Lard-enriched diet induced massive aorta and aortic valve calcification, with no detectable immune cell infiltration. The addition of cardiac irradiation to the cholesterol diet yielded more calcification and more immune cell infiltrates in the atheroma and the aortic valve than cholesterol alone. RNA sequencing (RNAseq) analyses of aorta and heart valves revealed that a cholesterol-enriched diet mainly triggered inflammation-related biological processes in the aorta, aortic and mitral valves, which was further enhanced by cardiac irradiation. Lard-enriched diet rather affected calcification- and muscle-related processes in the aorta and aortic valve, respectively. Neutrophil count and systemic levels of platelet factor 4 and ent-8-iso-15(S)-PGF2α were identified as early biomarkers of cholesterol-induced tissue alterations, while cardiac irradiation resulted in elevated levels of circulating nucleosomes.ConclusionDietary cholesterol, palmitic acid, and cardiac irradiation combined with a cholesterol-rich diet led to the development of distinct vascular and valvular lesions and changes in the circulating biomarkers. Hence, our study highlights unprecedented specificities related to common risk factors that underlie CVD.
Postolache, Adriana ; Centre Hospitalier Universitaire de Liège - CHU > > Service de cardiologie
LALLEMAND, François ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
COUCKE, Philippe ; Université de Liège - ULiège > Unités de recherche interfacultaires > Research Unit for a life-Course perspective on Health and Education (RUCHE)
Martinive, Philippe ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Herzog, Marielle
Pamart, Dorian
Terrell, Jason
Pincemail, Joël ; Université de Liège - ULiège > Département des sciences de la santé publique
Drion, Pierre ; Université de Liège - ULiège > GIGA > GIGA Platform Zebrafish facility & transgenics
DELVENNE, Philippe ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'anatomie et cytologie pathologiques
Nchimi Longang, Alain ; Université de Liège - ULiège > Département des sciences cliniques > Cardiologie - Pathologie spéciale et réhabilitation
LANCELLOTTI, Patrizio ; Centre Hospitalier Universitaire de Liège - CHU > > Service de cardiologie
World Health Organization. The top 10 causes of death. (2020)
Lambert MA Weir-McCall JR Salsano M Gandy SJ Levin D Cavin I et al. Prevalence and distribution of atherosclerosis in a low- to intermediate-risk population: Assessment with whole-body MR angiography. Radiology. (2018) 287:795–804. 10.1148/radiol.201817160929714681
Coffey S Roberts-Thomson R Brown A Carapetis J Chen M Enriquez-Sarano M et al. Global epidemiology of valvular heart disease. Nat Rev Cardiol. (2021) 18:853–64. 10.1038/s41569-021-00570-z34172950
Stewart BF Siscovick D Lind BK Gardin JM Gottdiener JS Smith VE et al. Clinical factors associated with calcific aortic valve disease. J Am Coll Cardiol. (1997) 29:630–4. 10.1016/S0735-1097(96)00563-39060903
Castelli WP Anderson K Wilson PWF Levy D. Lipids and risk of coronary heart disease The Framingham Study. Ann Epidemiol. (1992) 2:23–8. 10.1016/1047-2797(92)90033-M1342260
Nazarzadeh M Pinho-Gomes AC Bidel Z Dehghan A Canoy D Hassaine A et al. Plasma lipids and risk of aortic valve stenosis: A Mendelian randomization study. Eur Heart J. (2020) 41:3913–20B. 10.1093/eurheartj/ehaa07032076698
Jukema WJ Bruschke AVG van Boven AJ Reiben JHC Bal ET Zwinderman AH et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels - the regression growth evaluation statin study (REGRESS). Circulation. (1995) 91:2528–40. 10.1161/01.CIR.91.10.25287743614
Rouleau J. Improved outcome after acute coronary syndromes with an intensive versus standard lipid-lowering regimen: Results from the Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) trial. Am J Med. (2005) 118:28S–35S. 10.1016/j.amjmed.2005.09.01416356805
Lee SE Chang HJ Sung JM Park HB Heo R Rizvi A et al. Effects of statins on coronary atherosclerotic plaques: the PARADIGM study. JACC Cardiovasc Imaging. (2018) 11:1475–84. 10.1016/j.jcmg.2018.04.01529909109
Chan KL Teo K Dumesnil JG Ni A Tam J. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: Measuring effects of rosuvastatin (Astronomer) trial. Circulation. (2010) 121:306–14. 10.1161/CIRCULATIONAHA.109.90002720048204
Ray KK Stoekenbroek RM Kallend D Nishikido T Leiter LA Landmesser U et al. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the orion-1 randomized clinical trial. JAMA Cardiol. (2019) 4:1067–75. 10.1001/jamacardio.2019.350231553410
Schwartz GG Steg PG Szarek M Bhatt DL Bittner VA Diaz R et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. (2018) 379:2097–107. 10.1056/NEJMoa180117431272931
Sabatine MS Giugliano RP Keech AC Honarpour N Wiviott SD Murphy SA et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. (2017) 376:1713–22. 10.1056/NEJMoa161566428675189
Perrot N Valerio V Moschetta D Boekholdt SM Dina C Chen HY et al. Genetic and in vitro inhibition of PCSK9 and calcific aortic valve stenosis. JACC Basic to Transl Sci. (2020) 5:649–61. 10.1016/j.jacbts.2020.05.00432760854
Guasch-Ferré M Babio N Martínez-González MA Corella D Ros E Martín-Peláez S et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am J Clin Nutr. (2015) 102:1563–73. 10.3945/ajcn.115.11604626561617
Praagman J De Jonge EAL Kiefte-De Jong JC Beulens JWJ Sluijs I Schoufour JD et al. Dietary saturated fatty acids and coronary heart disease risk in a Dutch middle-Aged and elderly population. Arterioscler Thromb Vasc Biol. (2016) 36:2011–8. 10.1161/ATVBAHA.116.30757827417581
Donis N Jiang Z D'Emal C Dulgheru R Giera M Blomberg N et al. Regular dietary intake of palmitate causes vascular and valvular calcification in a rabbit model. Front Cardiovasc Med. (2021) 8:1–11. 10.3389/fcvm.2021.69218434250045
Darby SC Ewertz M McGale P Bennet AM Blom-Goldman U Brønnum D et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. (2013) 368:987–98. 10.1056/NEJMoa120982523484825
Galper SL Yu JB Mauch PM Strasser JF Silver B LaCasce A Marcus KJ et al. Clinically significant cardiac disease in patients with Hodgkin lymphoma treated with mediastinal irradiation. Blood. (2011) 117:412–8. 10.1182/blood-2010-06-29132820858859
Desai MY Windecker S Lancellotti P Bax JJ Griffin BP Cahlon O et al. Prevention, diagnosis, and management of radiation-associated cardiac disease: JACC scientific expert panel. J Am Coll Cardiol. (2019) 74:905–27. 10.1016/j.jacc.2019.07.00631416535
Donis N Oury C Moonen M Lancellotti P. Treating cardiovascular complications of radiotherapy: a role for new pharmacotherapies. Expert Opin Pharmacother. (2018) 19:431–42. 10.1080/14656566.2018.144608029494295
Anders S Huber W. Differential expression analysis for sequence count data. Genome Biol. (2010) 11. 10.1186/gb-2010-11-10-r10620979621
Craig DB Kannan S Dombkowski AA. Augmented annotation and orthologue analysis for oryctolagus cuniculus: better bunny. BMC Bioinform. (2012) 13. 10.1186/1471-2105-13-8422568790
Sangar V Blankenberg DJ Altman N Lesk AM. Quantitative sequence-function relationships in proteins based on gene ontology. BMC Bioinform. (2007) 8:1–15. 10.1186/1471-2105-8-29417686158
Xiao Y Hsiao TH Suresh U Chen HIH Wu X Wolf SE et al. novel significance score for gene selection and ranking. Bioinformatics. (2014) 30:801–7. 10.1093/bioinformatics/btr67122321699
Fan J Kitajima S Watanabe T Xu J Zhang J Liu E et al. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther. (2015) 146:104–19. 10.1016/j.pharmthera.2014.09.00925277507
Tsukada T Rosenfeld M Ross R Gown AM. Immunocytochemical analysis of cellular components in atherosclerotic lesions. Use of monoclonal antibodies with the Watanabe and fat-fed rabbit. Arteriosclerosis. (1986) 6:601–13. 10.1161/01.ATV.6.6.6013778306
Koniari I Mavrilas D Papadaki H Karanikolas M Mandellou M Papalois A et al. Structural and biomechanical alterations in rabbit thoracic aortas are associated with the progression of atherosclerosis. Lipids Health Dis. (2011) 10:125. 10.1186/1476-511X-10-12521791107
Herrmann J Lerman LO Mukhopadhyay D Napoli C Lerman A. Angiogenesis in atherogenesis. Arterioscler Thromb Vasc Biol. (2006) 26:1948–57. 10.1161/01.ATV.0000233387.90257.9b16794218
von Hundelshausen P Schmitt MMN. Platelets and their chemokines in atherosclerosis-clinical applications. Front Physiol. (2014) 5:1–17. 10.3389/fphys.2014.0029425152735
El-Khatib LA De Feijter-Rupp H Janoudi A Fry L Kehdi M Abela GS. Cholesterol induced heart valve inflammation and injury: Efficacy of cholesterol lowering treatment. Open Hear. (2020) 7:1–7. 10.1136/openhrt-2020-00127432747455
Dye BK Butler C Lincoln J. Smooth muscle α-actin expression in mitral valve interstitial cells is important for mediating extracellular matrix remodeling. J Cardiovasc Dev Dis. (2020) 7:32. 10.3390/jcdd703003232824919
Gaul DS Stein S Matter CM. Neutrophils in cardiovascular disease. Eur Heart J. (2017) 38:1702–4. 10.1093/eurheartj/ehx24430052884
Kopytek M Kolasa-Trela R Zabczyk M Undas A Natorska J. NETosis is associated with the severity of aortic stenosis: links with inflammation. Int J Cardiol. (2019) 286:121–6. 10.1016/j.ijcard.2019.03.04730952530
Ho YC Lai YC Lin HY Ko MH Wang SH Yang SJ et al. Low cardiac dose and neutrophil-to-lymphocyte ratio predict overall survival in inoperable esophageal squamous cell cancer patients after chemoradiotherapy. Sci Rep. (2021) 11:1702–4. 10.1038/s41598-021-86019-233758232
Alhamdi Y Abrams ST Cheng Z Jing S Su D Liu Z et al. Circulating histones are major mediators of cardiac injury in patients with sepsis. Crit Care Med. (2015) 43:2094–103. 10.1097/CCM.000000000000116226121070
Silk E Zhao H Weng H Ma D. The role of extracellular histone in organ injury. Cell Death Dis. (2017) 8:1–11. 10.1038/cddis.2017.5228542146
Roshan MHK Tambo A Pace NP. The role of TLR2, TLR4, and TLR9 in the pathogenesis of atherosclerosis. Int J Inflam. (2016) 2016:1532832. 10.1155/2016/153283227795867
Ekaney ML Otto GP Sossdorf M Sponholz C Boehringer M Loesche W et al. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care. (2014) 18:1–9. 10.1186/s13054-014-0543-825260379
Silvestre-roig C Braster Q Wichapong K Lee EY Teulon JM Berrebeh N et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature. (2019) 569:236–240. 10.1038/s41586-019-1167-632072162
Haritha VH George A Shaji B V Anie Y. NET-associated citrullinated histones promote LDL aggregation and foam cell formation in vitro. Exp Cell Res. (2020) 396:112320. 10.1016/j.yexcr.2020.11232033058833
Sachais BS Turrentine T McKenna JMD Rux AH Rader D Kowalska MA. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice. Thromb Haemost. (2007) 98:1108–13. 10.1160/TH07-04-027118000617