Comparison of several strategies for the deployment of a multivariate regression model on several handheld NIR instruments. Application to the quality control of medicines
Metformin; NIR spectroscopy; Handheld transmission spectrophotometer; Direct Standardization; Spectral Space Transformation; Slope/Bias Correction; Global modelling
Abstract :
[en] Chemometrics applied to spectroscopic measurements such as near-infrared are gaining more and more importance for quality control of pharmaceutical products. Handheld near-infrared devices show great promise as a medicines quality screening technique for post-marketing surveillance. These devices are able to detect substandard and falsified medicines in pharmaceutical supply chains and enable rapid action before these medicines reach patients. The instrumental and environmental changes, expected or not, can adversely affect the analytical performances of prediction models developed for routine applications. Based on a previous study, PLS prediction models were developed and validated on three similar handheld NIR transmission spectrophotometers of the same model and from same company. These models have shown to be effective in analyzing metformin tablet samples, but significant spectral differences between handheld systems complicated their deployment for routine analysis. In this study, different strategies have been applied and compared to correct the instrumental variations, including global modelling (GM) and calibration transfer methods (Direct Standardization, DS; Spectral Space Transformation, SST and Slope/Bias correction, SBC), considering the RMSEP and the accuracy profile as assessment criteria. The transfer methods showed good capabilities to maintain the predictive performances comparable to that of the global modelling approach, except for a remaining slight bias. This approach is interesting since very few standardization samples are required to develop an adequate transfer model. GM, SST and SBC were able to correct/handle drifts in the spectral responses of different handheld instruments and thus may help to avoid the need for a long, laborious, and costly full recalibration process due to inter-instrument variations.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Ciza Hamuli, Patient ; Université de Liège - ULiège > Faculté de Médecine > Doct. sc. bioméd. & pharma. (paysage) ; University of Kinshasa, Faculty of Pharmaceutical Sciences, LACOMEDA
Sacre, Pierre-Yves ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Waffo Tchounga, Christelle Ange ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM) ; University of Yaoundé I, Faculty of Medicine and Biomedical Sciences
Kimbeni, T. M.; University of Kinshasa, Faculty of Pharmaceutical Sciences, LACOMEDA
Masereel, Bernard ; Université de Liège - ULiège > Département de pharmacie
Hubert, Philippe ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Ziemons, Eric ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Marini Djang'Eing'A, Roland ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Language :
English
Title :
Comparison of several strategies for the deployment of a multivariate regression model on several handheld NIR instruments. Application to the quality control of medicines
Publication date :
July 2022
Journal title :
Journal of Pharmaceutical and Biomedical Analysis
ISSN :
0731-7085
eISSN :
1873-264X
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
215
Pages :
114755
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ARES - Académie de Recherche et d'Enseignement Supérieur F.R.S.-FNRS - Fonds de la Recherche Scientifique
Casian, T., Reznek, A., Vonica-Gligor, A.L., Van Renterghem, J., De Beer, T., Tomuță, I., Development, validation and comparison of near infrared and Raman spectroscopic methods for fast characterization of tablets with amlodipine and valsartan. Talanta 167 (2017), 333–343, 10.1016/j.talanta.2017.01.092.
Coic, L., Sacré, P.Y., Dispas, A., Dumont, E., Horne, J., De Bleye, C., Fillet, M., Hubert, P., Ziemons, E., Evaluation of the analytical performances of two Raman handheld spectrophotometers for pharmaceutical solid dosage form quantitation. Talanta, 214, 2020, 10.1016/j.talanta.2020.120888.
Rodionova, O.Y., Balyklova, K.S., Titova, A.V., Pomerantsev, A.L., Application of NIR spectroscopy and chemometrics for revealing of the ‘high quality fakes’ among the medicines. Forensic Chem. 8 (2018), 82–89, 10.1016/j.forc.2018.02.004.
Rodionova, O.Y., Titova, A.V., Demkin, N.A., Balyklova, K.S., Pomerantsev, A.L., Qualitative and quantitative analysis of counterfeit fluconazole capsules: a non-invasive approach using NIR spectroscopy and chemometrics. Talanta 195 (2019), 662–667, 10.1016/j.talanta.2018.11.088.
Ciza, P.H., Sacre, P.-Y., Waffo, C., Coïc, L., Avohou, H., Mbinze, J.K., Ngono, R., Marini, R.D., Hubert, P., Ziemons, E., Comparing the qualitative performances of handheld NIR and Raman spectrophotometers for the detection of falsified pharmaceutical products. Talanta 202 (2019), 469–478, 10.1016/j.talanta.2019.04.049.
Igne, B., Airiau, C., Talwar, S., Towns, E., Chemometrics in the Pharmaceutical industry. Compr. Chemom., 2020, Elsevier, 33–68, 10.1016/B978-0-12-409547-2.14638-4.
Du, W., Chen, Z.P., Zhong, L.J., Wang, S.X., Yu, R.Q., Nordon, A., Littlejohn, D., Holden, M., Maintaining the predictive abilities of multivariate calibration models by spectral space transformation. Anal. Chim. Acta 690 (2011), 64–70, 10.1016/J.ACA.2011.02.014.
Caillet, C., Vickers, S., Zambrzycki, S., Fernández, F.M., Vidhamaly, V., Boutsamay, K., Boupha, P., Peerawaranun, P., Mukaka, M., Newton, P.N., A comparative field evaluation of six medicine quality screening devices in Laos. PLoS Negl. Trop. Dis., 15, 2021, e0009674, 10.1371/JOURNAL.PNTD.0009674.
Caillet, C., Vickers, S., Vidhamaly, V., Boutsamay, K., Boupha, P., Zambrzycki, S., Luangasanatip, N., Lubell, Y., Fernandez, F.M., Newton, P.N., Evaluation of portable devices for medicine quality screening: lessons learnt, recommendations for implementation, and future priorities. PLOS Med, 18, 2021, e1003747, 10.1371/JOURNAL.PMED.1003747.
Ciza, P.H., Sacre, P.-Y., Kanyonyo, M.R., Waffo, C.T., Borive, M.A., Coïc, L., Mbinze, J.K., Hubert, P., Ziemons, E., Marini, R.D., Application of NIR handheld transmission spectroscopy and chemometrics to assess the quality of locally produced antimalarial medicines in the Democratic Republic of Congo. Talanta Open, 3, 2021, 100025, 10.1016/j.talo.2020.100025.
Li, Q., Sun, X., Ma, X., Li, B., Wang, H., Lv, H., Wang, Q., Xu, K., Chen, D., A calibration transfer methodology for Standardization of Raman instruments with different spectral resolutions using double digital projection slit. Chemom. Intell. Lab. Syst. 191 (2019), 143–147, 10.1016/j.chemolab.2019.07.004.
Brown, S.D., Transfer of Multivariate Calibration Models. Compr. Chemom., 2020, Elsevier, 359–391, 10.1016/B978-0-12-409547-2.00644-2.
Fearn, T., Standardisation and calibration transfer for near infrared instruments: a review. J. Infrared Spectrosc. 9 (2001), 229–244, 10.1255/jnirs.309.
Folch-Fortuny, A., Vitale, R., de Noord, O.E., Ferrer, A., Calibration transfer between NIR spectrometers: New proposals and a comparative study. J. Chemom., 31, 2017, e2874, 10.1002/cem.2874.
Yoon, J., Han, C., Chung, H., Calibration transfer algorithm for NIR spectroscopy as an online analyzer. IFAC Proc. 34 (2001), 303–308, 10.1016/s1474-6670(17)33609-1.
Malli, B., Birlutiu, A., Natschläger, T., Standard-free calibration transfer - an evaluation of different techniques. Chemom. Intell. Lab. Syst. 161 (2017), 49–60, 10.1016/j.chemolab.2016.12.008.
Wang, X., Mao, D.Z., Yang, Y.J., Calibration transfer between modelled and commercial pharmaceutical tablet for API quantification using backscattering NIR, Raman and transmission Raman spectroscopy (TRS). J. Pharm. Biomed. Anal., 194, 2021, 10.1016/j.jpba.2020.113766.
Workman, J.J., A review of calibration transfer practices and instrument differences in spectroscopy. Appl. Spectrosc. 72 (2018), 340–365, 10.1177/0003702817736064.
Ross Kunz, M., She, Y., Multivariate calibration maintenance and transfer through robust fused LASSO. J. Chemom., 27, 2013, 10.1002/cem.2529.
Nikzad-Langerodi, R., Sobieczky, F., Graph-based calibration transfer. J. Chemom., 2020, 10.1002/cem.3319.
Cooper, J.B., Larkin, C.M., Abdelkader, M.F., Calibration transfer of near-IR partial least squares property models of fuels using virtual standards. J. Chemom. 25 (2011), 496–505, 10.1002/cem.1395.
Ni, W., Brown, S.D., Man, R., Stacked PLS for calibration transfer without standards. J. Chemom. 25 (2011), 130–137, 10.1002/cem.1369.
Chen, W.R., Bin, J., Lu, H.M., Zhang, Z.M., Liang, Y.Z., Calibration transfer via an extreme learning machine auto-encoder. Analyst 141 (2016), 1973–1980, 10.1039/c5an02243f.
Xu, Z., Fan, S., Cheng, W., Liu, J., Zhang, P., Yang, Y., Xu, C., Liu, B., Liu, J., Wang, Q., Wu, Y., A correlation-analysis-based wavelength selection method for calibration transfer. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 230, 2020, 118053, 10.1016/j.saa.2020.118053.
Yuan Chen, Y., Bin Wang, Z., Cross components calibration transfer of NIR spectroscopy model through PCA and weighted ELM-based TrAdaBoost algorithm. Chemom. Intell. Lab. Syst., 192, 2019, 103824, 10.1016/j.chemolab.2019.103824.
Shan, P., Zhao, Y., Wang, Q., Ying, Y., Peng, S., Principal component analysis or kernel principal component analysis based joint spectral subspace method for calibration transfer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 227, 2020, 117653, 10.1016/j.saa.2019.117653.
Zheng, K., Feng, T., Zhang, W., Huang, X., Li, Z., Zhang, D., Yao, Y., Zou, X., Variable selection by double competitive adaptive reweighted sampling for calibration transfer of near infrared spectra. Chemom. Intell. Lab. Syst. 191 (2019), 109–117, 10.1016/j.chemolab.2019.07.001.
Wang, X., Mao, D.Z., Yang, Y.J., Calibration transfer between modelled and commercial pharmaceutical tablet for API quantification using backscattering NIR, Raman and transmission Raman spectroscopy (TRS). J. Pharm. Biomed. Anal., 194, 2021, 113766, 10.1016/j.jpba.2020.113766.
Sjöblom, J., Svensson, O., Josefson, M., Kullberg, H., Wold, S., An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemom. Intell. Lab. Syst. 44 (1998), 229–244, 10.1016/S0169-7439(98)00112-9.
Martens, H., Høy, M., Wise, B.M., Bro, R., Brockhoff, P.B., Pre-whitening of data by covariance-weighted pre-processing. J. Chemom. 17 (2003), 153–165, 10.1002/CEM.780.
Du, W., Chen, Z.P., Zhong, L.J., Wang, S.X., Yu, R.Q., Nordon, A., Littlejohn, D., Holden, M., Maintaining the predictive abilities of multivariate calibration models by spectral space transformation. Anal. Chim. Acta 690 (2011), 64–70, 10.1016/J.ACA.2011.02.014.
Bergman, E.-L., Brage, H., Josefson, M., Svensson, O., Sparén, A., Transfer of NIR calibrations for pharmaceutical formulations between different instruments. J. Pharm. Biomed. Anal. 41 (2006), 89–98, 10.1016/j.jpba.2005.10.042.
Saraswati, K., Sichanh, C., Newton, P.N., Caillet, C., Quality of medical products for diabetes management: a systematic review. BMJ Glob. Heal., 4, 2019, 10.1136/bmjgh-2019-001636.
Ncube, B.M., Dube, A., Ward, K., Establishment of the African medicines agency: progress, challenges and regulatory readiness. J. Pharm. Policy Pract. 14 (2021), 1–12, 10.1186/s40545-020-00281-9.
USP–NF. Metformin Hydrochloride Tablets (Ed.), 1, USP, Rockville, MD, May, p. 2020, doi:10.31003/USPNF_M49800_02_01.
Halberg, H.F.F., Holst, A.Y., Kaufmann, N., Bro, R., Calibration model fusion. J. Chemom., 2021, 1–8, 10.1002/cem.3350.