Article (Scientific journals)
Hot-Carrier Cooling in High-Quality Graphene Is Intrinsically Limited by Optical Phonons
Pogna, E. A. A.; Jia, X.; Principi, A. et al.
2021In ACS Nano, 15 (7), p. 11285-11295
Peer Reviewed verified by ORBi
 

Files


Full Text
acsnano.0c10864.pdf
Publisher postprint (4.36 MB)
Download
Annexes
nn0c10864_si_001.pdf
(2.01 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Acoustic wave scattering; Carrier mobility; Cooling systems; Data communication systems; Dynamics; Electromagnetic wave emission; Graphene; Graphene devices; Hot carriers; Optoelectronic devices; Phonons; Spectroscopy; Substrates; Acoustic-phonon scattering; Carrier distributions; Carrier-carrier scattering; Elevated temperature; Nonlinear frequency converters; Relaxation dynamics; Suspended graphene; Ultrafast pump-probe spectroscopy; Electronic cooling
Abstract :
[en] Many promising optoelectronic devices, such as broadband photodetectors, nonlinear frequency converters, and building blocks for data communication systems, exploit photoexcited charge carriers in graphene. For these systems, it is essential to understand the relaxation dynamics after photoexcitation. These dynamics contain a sub-100 fs thermalization phase, which occurs through carrier-carrier scattering and leads to a carrier distribution with an elevated temperature. This is followed by a picosecond cooling phase, where different phonon systems play a role: graphene acoustic and optical phonons, and substrate phonons. Here, we address the cooling pathway of two technologically relevant systems, both consisting of high-quality graphene with a mobility >10000 cm2 V-1 s-1 and environments that do not efficiently take up electronic heat from graphene: WSe2-encapsulated graphene and suspended graphene. We study the cooling dynamics using ultrafast pump-probe spectroscopy at room temperature. Cooling via disorder-assisted acoustic phonon scattering and out-of-plane heat transfer to substrate phonons is relatively inefficient in these systems, suggesting a cooling time of tens of picoseconds. However, we observe much faster cooling, on a time scale of a few picoseconds. We attribute this to an intrinsic cooling mechanism, where carriers in the high-energy tail of the hot-carrier distribution emit optical phonons. This creates a permanent heat sink, as carriers efficiently rethermalize. We develop a macroscopic model that explains the observed dynamics, where cooling is eventually limited by optical-to-acoustic phonon coupling. These fundamental insights will guide the development of graphene-based optoelectronic devices. ©
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Pogna, E. A. A.;  NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, 56127, Italy, Department of Physics, Politecnico di Milano, Milan, 20133, Italy
Jia, X.;  Max-Planck-Institut für Polymerforschung, Mainz, 55128, Germany
Principi, A.;  School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom
Block, A.;  Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
Banszerus, L.;  JARA-FIT and Second Institute of Physics, RWTH Aachen University, EU, Aachen, 52074, Germany
Liu, X.;  Center for Nanochemistry, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China, Beijing Graphene Institute, Beijing, 100095, China
Sohier, Thibault ;  Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Forti, S.;  Center for Nanotechnology Innovation IIT@NEST, Piazza San Silvestro 12, Pisa, 56127, Italy
Soundarapandian, K.;  ICFO-Institut de Ciències Fotòniques, BIST, Castelldefels, Barcelona, 08860, Spain
Terrés, B.;  ICFO-Institut de Ciències Fotòniques, BIST, Castelldefels, Barcelona, 08860, Spain
Mehew, J. D.;  Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
Trovatello, C.;  Department of Physics, Politecnico di Milano, Milan, 20133, Italy
Coletti, C.;  Center for Nanotechnology Innovation IIT@NEST, Piazza San Silvestro 12, Pisa, 56127, Italy, Graphene Laboratories, Via Morego 30, Genova, 16163, Italy
Koppens, F. H. L.;  ICFO-Institut de Ciències Fotòniques, BIST, Castelldefels, Barcelona, 08860, Spain, ICREA-Institució Catalana de Reçerca i Estudis Avancats, Barcelona, 08010, Spain
Bonn, M.;  Max-Planck-Institut für Polymerforschung, Mainz, 55128, Germany
Wang, H. I.;  Max-Planck-Institut für Polymerforschung, Mainz, 55128, Germany
Van Hulst, N.;  ICFO-Institut de Ciències Fotòniques, BIST, Castelldefels, Barcelona, 08860, Spain, ICREA-Institució Catalana de Reçerca i Estudis Avancats, Barcelona, 08010, Spain
Verstraete, Matthieu  ;  Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Peng, H.;  Center for Nanochemistry, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China, Beijing Graphene Institute, Beijing, 100095, China
Liu, Zhongfang
Stampfer, C.;  JARA-FIT and Second Institute of Physics, RWTH Aachen University, EU, Aachen, 52074, Germany
Cerullo, G.;  Department of Physics, Politecnico di Milano, Milan, 20133, Italy
Tielrooij, K.-J.;  Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
Zhang, Jincan
More authors (14 more) Less
Language :
English
Title :
Hot-Carrier Cooling in High-Quality Graphene Is Intrinsically Limited by Optical Phonons
Publication date :
2021
Journal title :
ACS Nano
ISSN :
1936-0851
eISSN :
1936-086X
Publisher :
American Chemical Society
Volume :
15
Issue :
7
Pages :
11285-11295
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer
CÉCI : Consortium des Équipements de Calcul Intensif
Funding text :
We would like to thank Andrea Tomadin for discussions. The authors acknowledge funding from the European Union Horizon 2020 Programme under Grant Agreement No. 881603 Graphene Core 3. ICN2 was supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV- 2017-0706). A.P. acknowledges support from the European Commission under the EU Horizon 2020 MSCA-RISE-2019 programme (project 873028 HYDROTRONICS) and from the Leverhulme Trust under grant RPG-2019-363. K.J.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 804349 (ERC StG CUHL), RyC fellowship No. RYC-2017-22330, and IAE project PID2019-111673GB-I00 and financial support through the MAINZ Visiting Professorship. X.J. acknowledges the support from the Max Planck Graduate Center with the Johannes Gutenberg-Universität Mainz (MPGC). J.Z. acknowledges the support from National Natural Science Foundation of China (No. 52072042). Z.L. acknowledges the support from National Natural Science Foundation of China (No. 51520105003). T.S. acknowledges support from the University of Liege under Special Funds for Research, IPD-STEMA Programme. M.J.V. gratefully acknowledges funding from the Belgian Fonds National de la Recherche Scientifique (FNRS) under PDR grant T.0103.19- ALPS. Computational resources were provided by CECI (FRSFNRS G.A. 2.5020.11) and the Zenobe Tier-1 supercomputer (Gouvernement Wallon G.A. 1117545) and by a PRACE-3IP DECI grant 2DSpin and Pylight on Beskow (G.A. 653838 of H2020). ICFO was supported by the Severo Ochoa program for Centers of Excellence in R&D (CEX2019-000910-S), Fundació Privada Cellex, Fundació Privada Mir-Puig, and the Generalitat de Catalunya through the CERCA program. N.v.H. acknowledges funding by the European Commission (ERC AdG 670949-LightNet), the Spanish Plan Nacional (PGC2018-096875
Available on ORBi :
since 14 March 2022

Statistics


Number of views
90 (2 by ULiège)
Number of downloads
61 (1 by ULiège)

Scopus citations®
 
48
Scopus citations®
without self-citations
34
OpenCitations
 
23
OpenAlex citations
 
52

Bibliography


Similar publications



Contact ORBi