CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Pogna, E. A. A.; NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, 56127, Italy, Department of Physics, Politecnico di Milano, Milan, 20133, Italy
Jia, X.; Max-Planck-Institut für Polymerforschung, Mainz, 55128, Germany
Principi, A.; School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom
Block, A.; Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
Banszerus, L.; JARA-FIT and Second Institute of Physics, RWTH Aachen University, EU, Aachen, 52074, Germany
Liu, X.; Center for Nanochemistry, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China, Beijing Graphene Institute, Beijing, 100095, China
Sohier, Thibault ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Forti, S.; Center for Nanotechnology Innovation IIT@NEST, Piazza San Silvestro 12, Pisa, 56127, Italy
Mehew, J. D.; Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
Trovatello, C.; Department of Physics, Politecnico di Milano, Milan, 20133, Italy
Coletti, C.; Center for Nanotechnology Innovation IIT@NEST, Piazza San Silvestro 12, Pisa, 56127, Italy, Graphene Laboratories, Via Morego 30, Genova, 16163, Italy
Koppens, F. H. L.; ICFO-Institut de Ciències Fotòniques, BIST, Castelldefels, Barcelona, 08860, Spain, ICREA-Institució Catalana de Reçerca i Estudis Avancats, Barcelona, 08010, Spain
Bonn, M.; Max-Planck-Institut für Polymerforschung, Mainz, 55128, Germany
Wang, H. I.; Max-Planck-Institut für Polymerforschung, Mainz, 55128, Germany
Van Hulst, N.; ICFO-Institut de Ciències Fotòniques, BIST, Castelldefels, Barcelona, 08860, Spain, ICREA-Institució Catalana de Reçerca i Estudis Avancats, Barcelona, 08010, Spain
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Peng, H.; Center for Nanochemistry, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China, Beijing Graphene Institute, Beijing, 100095, China
Liu, Zhongfang
Stampfer, C.; JARA-FIT and Second Institute of Physics, RWTH Aachen University, EU, Aachen, 52074, Germany
Cerullo, G.; Department of Physics, Politecnico di Milano, Milan, 20133, Italy
Tielrooij, K.-J.; Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
Hot-Carrier Cooling in High-Quality Graphene Is Intrinsically Limited by Optical Phonons
Publication date :
2021
Journal title :
ACS Nano
ISSN :
1936-0851
eISSN :
1936-086X
Publisher :
American Chemical Society
Volume :
15
Issue :
7
Pages :
11285-11295
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
Funding text :
We would like to thank Andrea Tomadin for discussions. The
authors acknowledge funding from the European Union
Horizon 2020 Programme under Grant Agreement No.
881603 Graphene Core 3. ICN2 was supported by the Severo
Ochoa program from Spanish MINECO (Grant No. SEV-
2017-0706). A.P. acknowledges support from the European
Commission under the EU Horizon 2020 MSCA-RISE-2019
programme (project 873028 HYDROTRONICS) and from
the Leverhulme Trust under grant RPG-2019-363. K.J.T.
acknowledges funding from the European Union’s Horizon
2020 research and innovation program under Grant Agreement
No. 804349 (ERC StG CUHL), RyC fellowship No.
RYC-2017-22330, and IAE project PID2019-111673GB-I00
and financial support through the MAINZ Visiting Professorship.
X.J. acknowledges the support from the Max Planck
Graduate Center with the Johannes Gutenberg-Universität
Mainz (MPGC). J.Z. acknowledges the support from National
Natural Science Foundation of China (No. 52072042). Z.L.
acknowledges the support from National Natural Science
Foundation of China (No. 51520105003). T.S. acknowledges
support from the University of Liege under Special Funds for
Research, IPD-STEMA Programme. M.J.V. gratefully acknowledges
funding from the Belgian Fonds National de la
Recherche Scientifique (FNRS) under PDR grant T.0103.19-
ALPS. Computational resources were provided by CECI (FRSFNRS
G.A. 2.5020.11) and the Zenobe Tier-1 supercomputer
(Gouvernement Wallon G.A. 1117545) and by a PRACE-3IP
DECI grant 2DSpin and Pylight on Beskow (G.A. 653838 of
H2020). ICFO was supported by the Severo Ochoa program
for Centers of Excellence in R&D (CEX2019-000910-S),
Fundació Privada Cellex, Fundació Privada Mir-Puig, and the
Generalitat de Catalunya through the CERCA program. N.v.H.
acknowledges funding by the European Commission (ERC
AdG 670949-LightNet), the Spanish Plan Nacional
(PGC2018-096875
George, P. A.; Strait, J.; Dawlaty, J.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene. Nano Lett. 2008, 8, 4248-4251, 10.1021/nl8019399
Breusing, M.; Kuehn, S.; Winzer, T.; Malić, E.; Milde, F.; Severin, N.; Rabe, J. P.; Ropers, C.; Knorr, A.; Elsaesser, T. Ultrafast Nonequilibrium Carrier Dynamics in a Single Graphene Layer. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 153410, 10.1103/PhysRevB.83.153410
Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y. J.; Lombardo, A.; Milana, S.; Nair, R. R.; Novoselov, K. S.; Ferrari, A. C.; Cerullo, G.; Polini, M. Ultrafast Collinear Scattering and Carrier Multiplication in Graphene. Nat. Commun. 2013, 4, 1987, 10.1038/ncomms2987
Gierz, I.; Petersen, J. C.; Mitrano, M.; Cacho, C.; Turcu, I. C. E.; Springate, E.; Stöhr, A.; Köhler, A.; Starke, U.; Cavalleri, A. Snapshots of Non-Equilibrium Dirac Carrier Distributions in Graphene. Nat. Mater. 2013, 12, 1119-1124, 10.1038/nmat3757
Tielrooij, K.; Song, J.; Jensen, S. A.; Centeno, A.; Pesquera, A.; Elorza, A. Z.; Bonn, M.; Levitov, L.; Koppens, F. Photoexcitation Cascade and Multiple Hot-Carrier Generation in Graphene. Nat. Phys. 2013, 9, 248-252, 10.1038/nphys2564
Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780-793, 10.1038/nnano.2014.215
Bandurin, D. A.; Svintsov, D.; Gayduchenko, I.; Xu, S. G.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; Taniguchi, T.; Watanabe, K.; Grigorieva, I. V.; Polini, M.; Goltsman, G. N.; Geim, A. K.; Fedoro, G. Resonant Terahertz Detection Using Graphene Plasmons. Nat. Commun. 2018, 9, 5392, 10.1038/s41467-018-07848-w
Castilla, S.; Terrés, B.; Autore, M.; Viti, L.; Li, J.; Nikitin, A. Y.; Vangelidis, I.; Watanabe, K.; Taniguchi, T.; Lidorikis, E.; Vitiello, M. S.; Hillenbrand, R.; Tielrooij, K.-J.; Koppens, F. H. L. Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction. Nano Lett. 2019, 19, 2765-2773, 10.1021/acs.nanolett.8b04171
Viti, L.; Purdie, D. G.; Lombardo, A.; Ferrari, A. C.; Vitiello, M. S. HBN-Encapsulated, Graphene-Based, Room-Temperature Terahertz Receivers, with High Speed and Low Noise. Nano Lett. 2020, 20, 3169-3177, 10.1021/acs.nanolett.9b05207
Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F. H. L.; Huyghebaert, C.; Neumaier, D.; Galli, P.; Templ, W.; Ferrari, A. C. Graphene-Based Integrated Photonics for Next-Generation Datacom and Telecom. Nat. Rev. Mater. 2018, 3, 392-414, 10.1038/s41578-018-0040-9
Muench, J. E.; Ruocco, A.; Giambra, M. A.; Miseikis, V.; Zhang, D.; Wang, J.; Watson, H. F. Y.; Park, G. C.; Akhavan, S.; Sorianello, V.; Midrio, M.; Tomadin, A.; Coletti, C.; Romagnoli, M.; Ferrari, A. C.; Goykhman, I. Waveguide-Integrated, Plasmonic Enhanced Graphene Photodetectors. Nano Lett. 2019, 19, 7632-7644, 10.1021/acs.nanolett.9b02238
Hafez, H. A.; Kovalev, S.; Deinert, J. C.; Mics, Z.; Green, B.; Awari, N.; Chen, M.; Germanskiy, S.; Lehnert, U.; Teichert, J.; Wang, Z.; Tielrooij, K. J.; Liu, Z.; Chen, Z.; Narita, A.; Müllen, K.; Bonn, M.; Gensch, M.; Turchinovich, D. Extremely Efficient Terahertz High-Harmonic Generation in Graphene by Hot Dirac Fermions. Nature 2018, 561, 507-511, 10.1038/s41586-018-0508-1
Soavi, G.; Wang, G.; Rostami, H.; Purdie, D. G.; De Fazio, D.; Ma, T.; Luo, B.; Wang, J.; Ott, A. K.; Yoon, D.; Bourelle, S. A.; Muench, J. E.; Goykhman, I.; Dal Conte, S.; Celebrano, M.; Tomadin, A.; Polini, M.; Cerullo, G.; Ferrari, A. C. Broadband, Electrically Tunable Third-Harmonic Generation in Graphene. Nat. Nanotechnol. 2018, 13, 583-588, 10.1038/s41565-018-0145-8
Soavi, G.; Wang, G.; Rostami, H.; Tomadin, A.; Balci, O.; Paradisanos, I.; Pogna, E. A. A.; Cerullo, G.; Lidorikis, E.; Polini, M.; Ferrari, A. C. Hot Electrons Modulation of Third-Harmonic Generation in Graphene. ACS Photonics 2019, 6, 2841-2849, 10.1021/acsphotonics.9b00928
Deinert, J.-C.; Iranzo, D. A.; Perez, R.; Jia, X.; Hafez, H. A.; Ilyakov, I.; Awari, N.; Chen, M.; Bawatna, M.; Ponomaryov, A. N.; Germanskiy, S.; Bonn, M.; Koppens, F. H. L.; Turchinovich, D.; Gensch, M.; Kovalev, S.; Tielrooij, K.-J. Grating-Graphene Metamaterial as a Platform for Terahertz Nonlinear Photonics. ACS Nano 2021, 15, 1145-1154, 10.1021/acsnano.0c08106
Gabor, N. M.; Song, J. C.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Hot Carrier-Assisted Intrinsic Photoresponse in Graphene. Science 2011, 334, 648-652, 10.1126/science.1211384
Tielrooij, K.-J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K. S.; Lau, C. N.; Jarillo-Herrero, P.; van Hulst, N. F.; Koppens, F. H. L. Generation of Photovoltage in Graphene on a Femtosecond Timescale through Efficient Carrier Heating. Nat. Nanotechnol. 2015, 10, 437-443, 10.1038/nnano.2015.54
Iglesias, J. M.; Pascual, E.; Martín, M. J.; Rengel, R. Relevance of Collinear Processes to the Ultrafast Dynamics of Photoexcited Carriers in Graphene. Phys. E 2020, 123, 114211, 10.1016/j.physe.2020.114211
Tomadin, A.; Hornett, S. M.; Wang, H. I.; Alexeev, E. M.; Candini, A.; Coletti, C.; Turchinovich, D.; Kläui, M.; Bonn, M.; Koppens, F. H. L.; Hendry, E.; Polini, M.; Tielrooij, K.-J. The Ultrafast Dynamics and Conductivity of Photoexcited Graphene at Different Fermi Energies. Sci. Adv. 2018, 4, eaar5313, 10.1126/sciadv.aar5313
Fong, K. C.; Wollman, E. E.; Ravi, H.; Chen, W.; Clerk, A. A.; Shaw, M. D.; Leduc, H. G.; Schwab, K. C. Measurement of the Electronic Thermal Conductance Channels and Heat Capacity of Graphene at Low Temperature. Phys. Rev. X 2013, 3, 41008, 10.1103/PhysRevX.3.041008
Kampfrath, T.; Perfetti, L.; Schapper, F.; Frischkorn, C.; Wolf, M. Strongly Coupled Optical Phonons in the Ultrafast Dynamics of the Electronic Energy and Current Relaxation in Graphite. Phys. Rev. Lett. 2005, 95, 187403, 10.1103/PhysRevLett.95.187403
Hale, P. J.; Hornett, S. M.; Moger, J.; Horsell, D. W.; Hendry, E. Hot Phonon Decay in Supported and Suspended Exfoliated Graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 121404, 10.1103/PhysRevB.83.121404
Mounet, N.; Marzari, N. First-Principles Determination of the Structural, Vibrational and Thermodynamic Properties of Diamond, Graphite, and Derivatives. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 205214, 10.1103/PhysRevB.71.205214
Mihnev, M. T.; Kadi, F.; Divin, C. J.; Winzer, T.; Lee, S.; Liu, C.-h.; Zhong, Z.; Berger, C.; Heer, W. A. D.; Malic, E.; Knorr, A.; Norris, T. B. Microscopic Origins of the Terahertz Carrier Relaxation and Cooling Dynamics in Graphene. Nat. Commun. 2016, 7, 11617, 10.1038/ncomms11617
Bistritzer, R.; MacDonald, A. H. Electronic Cooling in Graphene. Phys. Rev. Lett. 2009, 102, 206410, 10.1103/PhysRevLett.102.206410
Song, J. C. W.; Reizer, M. Y.; Levitov, L. S. Disorder-Assisted Electron-Phonon Scattering and Cooling Pathways in Graphene. Phys. Rev. Lett. 2012, 109, 106602, 10.1103/PhysRevLett.109.106602
Betz, A. C.; Jhang, S. H.; Pallecchi, E.; Ferreira, R.; Fève, G.; Berroir, J.-M.; Plaçais, B. Supercollision Cooling in Undoped Graphene. Nat. Phys. 2013, 9, 109-112, 10.1038/nphys2494
Graham, M. W.; Shi, S.-F.; Wang, Z.; Ralph, D. C.; Park, J.; McEuen, P. L. Transient Absorption and Photocurrent Microscopy Show that Hot Electron Supercollisions Describe the Rate-Limiting Relaxation Step in Graphene. Nano Lett. 2013, 13, 5497-502, 10.1021/nl4030787
Alencar, T. V.; Silva, M. G.; Malard, L. M.; de Paula, A. M. Defect-Induced Supercollision Cooling of Photoexcited Carriers in Graphene. Nano Lett. 2014, 14, 5621-5624, 10.1021/nl502163d
Graham, M. W.; Shi, S. F.; Ralph, D. C.; Park, J.; McEuen, P. L. Photocurrent Measurements of Supercollision Cooling in Graphene. Nat. Phys. 2013, 9, 103-108, 10.1038/nphys2493
Tielrooij, K.-J.; Hesp, N. C. H.; Principi, A.; Lundeberg, M. B.; Pogna, E. A. A.; Banszerus, L.; Mics, Z.; Massicotte, M.; Schmidt, P.; Davydovskaya, D.; Purdie, D. G.; Goykhman, I.; Soavi, G.; Lombardo, A.; Watanabe, K.; Taniguchi, T.; Bonn, M.; Turchinovich, D.; Stampfer, C.; Ferrari, A. C.; Cerullo, G.; Polini, M.; Koppens, F. H. L. Out-of-Plane Heat Transfer in van der Waals Stacks through Electron-Hyperbolic Phonon Coupling. Nat. Nanotechnol. 2018, 13, 41-46, 10.1038/s41565-017-0008-8
Principi, A.; Lundeberg, M. B.; Hesp, N. C.; Tielrooij, K. J.; Koppens, F. H.; Polini, M. Super-Planckian Electron Cooling in a van der Waals Stack. Phys. Rev. Lett. 2017, 118, 126804, 10.1103/PhysRevLett.118.126804
Yang, W.; Berthou, S.; Lu, X.; Wilmart, Q.; Denis, A.; Rosticher, M.; Taniguchi, T.; Watanabe, K.; Fève, G.; Berroir, J.-m.; Zhang, G.; Voisin, C.; Baudin, E.; Plaçais, B. A Graphene Zener-Klein Transistor Cooled by a Hyperbolic Substrate. Nat. Nanotechnol. 2018, 13, 47-52, 10.1038/s41565-017-0007-9
Caldwell, J. D.; Kretinin, A. V.; Chen, Y.; Giannini, V.; Fogler, M. M.; Francescato, Y.; Ellis, C. T.; Tischler, J. G.; Woods, C. R.; Giles, A. J.; Hong, M.; Watanabe, K.; Taniguchi, T.; Maier, S. A.; Novoselov, K. S. Sub-Diffractional Volume-Confined Polaritons in the Natural Hyperbolic Material Hexagonal Boron Nitride. Nat. Commun. 2014, 5, 5521, 10.1038/ncomms6221
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron Nitride Substrates for High-Quality Graphene Electronics. Nat. Nanotechnol. 2010, 5, 722-726, 10.1038/nnano.2010.172
Wang, L.; Meric, I.; Huang, P.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.; Muller, D. A.; Guo, J.; Kim, P.; Hone, J.; Shepard, K. L.; Dean, C. R. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614-617, 10.1126/science.1244358
Banszerus, L.; Sohier, T.; Epping, A.; Winkler, F.; Libisch, F.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Müller-Caspary, K.; Marzari, N.; Mauri, F.; Beschoten, B.; Stampfer, C. Extraordinary High Room-Temperature Carrier Mobility in Graphene-WSe2Heterostructures. arXiv:1909.09523 http://arxiv.org/abs/1909.09523 (accessed December 25, 2020).
Backes, C.; Abdelkader, A. M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; Bellani, S.; Berger, C.; Berger, R.; Ortega, M. M.; Bernard, C.; Beton, P. H.; Beyer, A.; Bianco, A.; Bøggild, P.; Bonaccorso, A. et al. Production and Processing of Graphene and Related Materials. 2D Mater. 2020, 7, 022001, 10.1088/2053-1583/ab1e0a
Neumann, C.; Banszerus, L.; Schmitz, M.; Reichardt, S.; Sonntag, J.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Stampfer, C. Line Shape of the Raman 2D Peak of Graphene in van der Waals Heterostructures. Phys. Status Solidi B 2016, 253, 2326-2330, 10.1002/pssb.201600283
Robinson, J. A.; Wetherington, M.; Tedesco, J. L.; Campbell, P. M.; Weng, X.; Stitt, J.; Fanton, M. A.; Frantz, E.; Snyder, D.; VanMil, B. L.; Jernigan, G. G.; Rachael, L. M. W.; Eddy, C. R.; Gaskill, D. K. Correlating Raman Spectral Signatures with Carrier Mobility in Epitaxial Graphene: A Guide to Achieving High Mobility on the Wafer Scale. Nano Lett. 2009, 9, 2873-2876, 10.1021/nl901073g
Kang, K.; Abdula, D.; Cahill, D. G.; Shim, M. Lifetimes of Optical Phonons in Graphene and Graphite by Time-Resolved Incoherent Anti-Stokes Raman Scattering. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 165405, 10.1103/PhysRevB.81.165405
Lui, C. H.; Mak, K. F.; Shan, J.; Heinz, T. F. Ultrafast Photoluminescence from Graphene. Phys. Rev. Lett. 2010, 105, 127404, 10.1103/PhysRevLett.105.127404
Wang, H.; Strait, J. H.; George, P. A.; Shivaraman, S.; Shields, V. B.; Chandrashekhar, M.; Hwang, J.; Rana, F.; Spencer, M. G.; Ruiz-Vargas, C. S.; Park, J. Ultrafast Relaxation Dynamics of Hot Optical Phonons in Graphene. Appl. Phys. Lett. 2010, 96, 081917, 10.1063/1.3291615
Wu, S.; Liu, W. T.; Liang, X.; Schuck, P. J.; Wang, F.; Shen, Y. R.; Salmeron, M. Hot Phonon Dynamics in Graphene. Nano Lett. 2012, 12, 5495-5499, 10.1021/nl301997r
Bonini, N.; Lazzeri, M.; Marzari, N.; Mauri, F. Phonon Anharmonicities in Graphite and Graphene. Phys. Rev. Lett. 2007, 99, 176802, 10.1103/PhysRevLett.99.176802
Zhang, J.; Lin, L.; Sun, L.; Huang, Y.; Koh, A. L.; Dang, W.; Yin, J.; Wang, M.; Tan, C.; Li, T.; Tan, Z.; Liu, Z.; Peng, H. Clean Transfer of Large Graphene Single Crystals for High-Intactness Suspended Membranes and Liquid Cells. Adv. Mater. 2017, 29, 1700639, 10.1002/adma.201700639
Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Optical Separation of Mechanical Strain from Charge Doping in Graphene. Nat. Commun. 2012, 3, 1024, 10.1038/ncomms2022
Malard, L. M.; Mak, K. F.; Neto, A. C.; Peres, N.; Heinz, T. F. Observation of Intra-and Inter-Band Transitions in the Transient Optical Response of Graphene. New J. Phys. 2013, 15, 015009, 10.1088/1367-2630/15/1/015009
Huang, L.; Gao, B.; Hartland, G.; Kelly, M.; Xing, H. Ultrafast Relaxation of Hot Optical Phonons in Monolayer and Multilayer Graphene on Different Substrates. Surf. Sci. 2011, 605, 1657-1661, 10.1016/j.susc.2010.12.009
Laitinen, A.; Kumar, M.; Oksanen, M.; Plaçais, B.; Virtanen, P.; Hakonen, P. Coupling between Electrons and Optical Phonons in Suspended Bilayer Graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 121414, 10.1103/PhysRevB.91.121414
Viljas, J.; Heikkilä, T. Electron-Phonon Heat Transfer in Monolayer and Bilayer Graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 245404, 10.1103/PhysRevB.81.245404
Sohier, T.; Calandra, M.; Park, C.-H.; Bonini, N.; Marzari, N.; Mauri, F. Phonon-Limited Resistivity of Graphene by First-Principles Calculations: Electron-Phonon Interactions, Strain-Induced Gauge Field, and Boltzmann Equation. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 125414, 10.1103/PhysRevB.90.125414
Betz, A. C.; Vialla, F.; Brunel, D.; Voisin, C.; Picher, M.; Cavanna, A.; Madouri, A.; Fève, G.; Berroir, J. M.; Plaçais, B.; Pallecchi, E. Hot Electron Cooling by Acoustic Phonons in Graphene. Phys. Rev. Lett. 2012, 109, 056805, 10.1103/PhysRevLett.109.056805
Massicotte, M.; Soavi, G.; Principi, A.; Tielrooij, K. J. Hot Carriers in Graphene-Fundamentals and Applications. Nanoscale 2021, 13, 8376-8411, 10.1039/D0NR09166A
Block, A.; Liebel, M.; Yu, R.; Spector, M.; Sivan, Y.; de Abajo, F. G.; van Hulst, N. F. Tracking Ultrafast Hot-Electron Diffusion in Space and Time by Ultrafast Thermomodulation Microscopy. Sci. Adv. 2019, 5, eaav8965, 10.1126/sciadv.aav8965