A new alternative tool to analyse glycosylation in pharmaceutical proteins based on infrared spectroscopy combined with nonlinear support vector regression
Fourier Transform Infrared Spectroscopy (FT-IR); Pharmaceutical proteins; Monosaccharides content; Global rate of glycosylation; Support Vector Regression (SVR); Partial Least Squares Regression (PLSR)
Abstract :
[en] Almost 60% of commercialized pharmaceutical proteins are glycosylated. Glycosylation is considered a critical quality attribute, as it affects the stability, bioactivity and safety of proteins. Hence, the development of analytical methods to characterise the composition and structure of glycoproteins is crucial. Currently, existing methods are time-consuming, expensive, and require significant sample preparation steps, which can alter the robustness of the analyses. In this work, we suggest the use of a fast, direct, and simple Fourier transform infrared spectroscopy (FT-IR) combined with a chemometric strategy to address this challenge.
In this context, a database of FT-IR spectra of glycoproteins was built, and the glycoproteins were characterised by reference methods (MALDI-TOF, LC-ESI-QTOF and LC-FLR-MS) to estimate the mass ratio between carbohydrates and proteins and determine the composition in monosaccharides. The FT-IR spectra were processed first by Partial Least Squares Regression (PLSR), one of the most used regression algorithms in spectroscopy and secondly by Support Vector Regression (SVR). SVR has emerged in recent years and is now considered a powerful alternative to PLSR, thanks to its ability to flexibly model nonlinear relationships. The results provide clear evidence of the efficiency of the combination of FT-IR spectroscopy, and SVR modelling to characterise glycosylation in therapeutic proteins. The SVR models showed better predictive performances than the PLSR models in terms of RMSECV, RMSEP, R2CV, R2Pred and RPD. This tool offers several potential applications, such as comparing the glycosylation of a biosimilar and the original molecule, monitoring batch-to-batch homogeneity, and in-process control.
Disciplines :
Biotechnology
Author, co-author :
Hamla, Sabrina ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Sacre, Pierre-Yves ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Derenne, Allison
Derfoufi, Kheiro-Mouna
Cowper, Ben
Butré, Claire I
Delobel, Arnaud
Goormaghtigh, Erik
Hubert, Philippe ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Ziemons, Eric ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Language :
English
Title :
A new alternative tool to analyse glycosylation in pharmaceutical proteins based on infrared spectroscopy combined with nonlinear support vector regression
Publication date :
17 February 2022
Journal title :
Analyst
ISSN :
0003-2654
eISSN :
1364-5528
Publisher :
Royal Society of Chemistry, United Kingdom
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Développement d'un outil d'analyse des glycosylations dans les protéines thérapeutiques sur base de la spectroscopie FTIR.
Funders :
SPW EER - Service Public de Wallonie. Economie, Emploi, Recherche
Funding text :
This project was supported by the “Service Public de Wallonie-DGO6” (Walinnov 2017/2, convention # 1710032). We are grateful to the Saint-Pierre Hospital (Brussels, Belgium) and to the pharmacy of the University Hospital Center of Liège (CHU
Liège, Belgium) for providing us all the therapeutic proteins. A special thanks to Hermane Avohou, Alice Kasemiire and Priyanka Kumari for proofreading the article. We acknowledge FNRS grant no. 001518F (EOS-convention # 30467715). E. G. is
Research Director with the National Fund for Scientific Research (Belgium).
Planinc A. Bones J. Dejaegher B. Van Antwerpen P. Delporte C. Glycan characterization of biopharmaceuticals: Updates and perspectives Anal. Chim. Acta 2016 921 13 27 https://dx.doi.org/10.1016/j.aca.2016.03.049 10.1016/j.aca.2016.03.049 27126786
Zhang L. Luo S. Zhang B. Glycan analysis of therapeutic glycoproteins mAbs 2016 8 2 205 215 https://dx.doi.org/10.1080/19420862.2015.1117719 10.1080/19420862.2015.1117719 26599345
Berger M., Kaup M. and Blanchard V., Protein Glycosylation and Its Impact on Biotechnology, in Genomics Syst. Biol. Mamm. Cell Cult, ed. W. S. Hu and A.-P. Zeng, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 165-185. https://dx.doi.org/10.1007/10_2011_101
Egrie J. C. Dwyer E. Browne J. K. Hitz A. Lykos M. A. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin Exp. Hematol. 2003 31 290 299 https://dx.doi.org/10.1016/S0301-472X(03)00006-7 10.1016/S0301-472X(03)00006-7 12691916
Derenne A. Derfoufi K.-M. Cowper B. Delporte C. Goormaghtigh E. FTIR spectroscopy as an analytical tool to compare glycosylation in therapeutic monoclonal antibodies Anal. Chim. Acta 2020 1112 62 71 https://dx.doi.org/10.1016/j.aca.2020.03.038 10.1016/j.aca.2020.03.038 32334683
Padler-Karavani V. Yu H. Cao H. Chokhawala H. Karp F. Varki N. Chen X. Varki A. Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease Glycobiology 2008 18 818 830 https://dx.doi.org/10.1093/glycob/cwn072 10.1093/glycob/cwn072 18669916
Lalonde M.-E. Durocher Y. Therapeutic glycoprotein production in mammalian cells J. Biotechnol. 2017 251 128 140 https://dx.doi.org/10.1016/j.jbiotec.2017.04.028 10.1016/j.jbiotec.2017.04.028 28465209
Hossler P., Protein Glycosylation Control in Mammalian Cell Culture: Past Precedents and Contemporary Prospects, BT - Genomics and Systems Biology of Mammalian Cell Culture, ed. W. S. Hu and A.-P. Zeng, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, vol. 127, pp. 187-219
Hossler P. Khattak S. F. Li Z. J. Optimal and consistent protein glycosylation in mammalian cell culture Glycobiology 2009 19 9 936 949 https://dx.doi.org/10.1093/glycob/cwp079 10.1093/glycob/cwp079 19494347
Hajba L. Csanky E. Guttman A. Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review Anal. Chim. Acta 2016 943 November 8 16 https://dx.doi.org/10.1016/j.aca.2016.08.035 10.1016/j.aca.2016.08.035 27769380
Hilliard M. et al., Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis mAbs 2017 9 8 1349 1359 https://dx.doi.org/10.1080/19420862.2017.1377381 10.1080/19420862.2017.1377381 28895795
Barth A. Infrared spectroscopy of proteins Biochim. Biophys. Acta, Bioenerg. 2007 1767 9 1073 1101 https://dx.doi.org/10.1016/j.bbabio.2007.06.004 10.1016/j.bbabio.2007.06.004 17692815
Kong J. Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures Acta Biochim. Biophys. Sin. 2007 39 8 549 559 https://dx.doi.org/10.1111/j.1745-7270.2007.00320.x 10.1111/j.1745-7270.2007.00320.x 17687489
Goormaghtigh E. Ruysschaert J. M. Raussens V. “Evaluation of the information content in infrared spectra for protein secondary structure determination Biophys. J. 2006 90 2946 2957 10.1529/biophysj.105.072017 16428280
De Meutter J. Goormaghtigh E. FTIR Imaging of Protein Microarrays for High Throughput Secondary Structure Determination Anal. Chem. 2021 93 8 3733 3741 https://dx.doi.org/10.1021/acs.analchem.0c03677 10.1021/acs.analchem.0c03677 33577285
Girard J. M. Deschênes J. S. Tremblay R. Gagnon J. FT-IR/ATR univariate and multivariate calibration models for in situ monitoring of sugars in complex microalgal culture media Bioresour. Technol. 2013 144 664 668 https://dx.doi.org/10.1016/j.biortech.2013.06.094 10.1016/j.biortech.2013.06.094 23876970
Khajehpour M. Dashnau J. L. Vanderkooi J. M. Infrared spectroscopy used to evaluate glycosylation of proteins Anal. Biochem. 2006 348 1 40 48 https://dx.doi.org/10.1016/j.ab.2005.10.009 10.1016/j.ab.2005.10.009 16298329
Thissen U. Pepers M. Üstün B. Melssen W. J. Buydens L. M. C. Comparing support vector machines to PLS for spectral regression applications Chemom. Intell. Lab. Syst. 2004 73 2 169 179 https://dx.doi.org/10.1016/j.chemolab.2004.01.002 10.1016/j.chemolab.2004.01.002
Tange R. Rasmussen M. Taira E. Bro R. Application of support vector regression for simultaneous modelling of near infrared spectra from multiple process steps J. Near Infrared Spectrosc. 2015 23 75 https://dx.doi.org/10.1255/jnirs.1149 10.1255/jnirs.1149
Workman J. Koch M. Veltkamp D. Process analytical chemistry Anal. Chem. 2007 79 12 4345 4363 https://dx.doi.org/10.1021/ac070765q 10.1021/ac070765q 17474712
Challa S. Potumarthi R. Chemometrics-based process analytical technology (PAT) tools: Applications and adaptation in pharmaceutical and biopharmaceutical industries Appl. Biochem. Biotechnol. 2013 169 1 66 76 https://dx.doi.org/10.1007/s12010-012-9950-y 10.1007/s12010-012-9950-y 23138336
Wold S. Sjöström M. Eriksson L. PLS-regression: A basic tool of chemometrics Chemom. Intell. Lab. Syst. 2001 58 2 109 130 https://dx.doi.org/10.1016/S0169-7439(01)00155-1 10.1016/S0169-7439(01)00155-1
Balabin R. M. Lomakina E. I. Support vector machine regression (SVR/LS-SVM) - An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data Analyst 2011 136 8 1703 1712 https://dx.doi.org/10.1039/c0an00387e 10.1039/C0AN00387E 21350755
Goormaghtigh E., FTIR Data Processing and Analysis Tools, in Biol. Biomed. Infrared Spectrosc, ed. A. Barth and P. I. Haris, IOS Press, 2009, pp. 104-128
Goormaghtigh E. Ruysschaert J. Subtraction of atmospheric water contribution in Fourier transform infrared spectroscopy of biological membranes and proteins Spectrochim. Acta 1994 50 2137 2144 10.1016/0584-8539(94)00167-7
Blanchet L. Réhault J. Ruckebusch C. Huvenne J. P. Tauler R. de Juan A. Chemometrics description of measurement error structure: Study of an ultrafast absorption spectroscopy experiment Anal. Chim. Acta 2009 642 1-2 19 26 https://dx.doi.org/10.1016/j.aca.2008.11.039 10.1016/j.aca.2008.11.039 19427455
Gaigneaux A. Ruysschaert J. M. Goormaghtigh E. Cell discrimination by attenuated total reflection-fourier transform infrared spectroscopy: The impact of preprocessing of spectra Appl. Spectrosc. 2006 60 9 1022 1028 https://dx.doi.org/10.1366/000370206778397416 10.1366/000370206778397416 17002828
Paudel S., Nguyen P. H., Kling W. L., Elmitri M., Lacarrière B. and Le Corre O., Support vector machine in prediction of building energy demand using pseudo dynamic approach, ECOS 2015 - 28th Int. Conf. Effic. Cost, Optim. Simul. Environ. Impact Energy Syst., no. July, 2015
Schölkopf B., Learning with kernels, Proc. 2002 Int. Conf. Mach. Learn. Cybern., 2002, vol. 1, pp. 11-48
Tange R. I. Rasmussen M. A. Taira E. Bro R. Benchmarking support vector regression against partial least squares regression and artificial neural network: Effect of sample size on model performance J. Near Infrared Spectrosc. 2017 25 6 381 390 https://dx.doi.org/10.1177/0967033517734945 10.1177/0967033517734945
Zavala-Ortiz D. A. et al., Support Vector and Locally Weighted regressions to monitor monoclonal antibody glycosylation during CHO cell culture processes, an enhanced alternative to Partial Least Squares regression Biochem. Eng. J. 2020 154 November 2019 107457 https://dx.doi.org/10.1016/j.bej.2019.107457 10.1016/j.bej.2019.107457
Long N. Gianola D. Rosa G. J. M. Weigel K. A. Application of support vector regression to genome-assisted prediction of quantitative traits Theor. Appl. Genet. 2011 123 7 1065 1074 https://dx.doi.org/10.1007/s00122-011-1648-y 10.1007/s00122-011-1648-y 21739137
Ghorbani M. Zargar G. Jazayeri-Rad H. Prediction of Asphaltene Precipitation using Support Vector Regression tuned with Genetic Algorithms Petroleum 2016 2 3 301 306 https://dx.doi.org/10.1016/j.petlm.2016.05.006 10.1016/j.petlm.2016.05.006
Brereton R. G. Lloyd G. R. Support Vector Machines for classification and regression Analyst 2010 135 2 230 267 https://dx.doi.org/10.1039/b918972f 10.1039/B918972F 20098757
Ng W. Minasny B. Malone B. Filippi P. In search of an optimum sampling algorithm for prediction of soil properties from infrared spectra PeerJ 2018 6 e5722 https://dx.doi.org/10.7717/peerj.5722 10.7717/peerj.5722 30310751
Viegas T. R. Mata A. L. M. L. Duarte M. M. L. Lima K. M. G. Determination of quality attributes in wax jambu fruit using NIRS and PLS Food Chem. 2016 190 1 4 https://dx.doi.org/10.1016/j.foodchem.2015.05.063 10.1016/j.foodchem.2015.05.063 26212933
Minasny B. McBratney A. B. Why you don ‘ t need to use RPD By Budiman Minasny & Alex. McBratney University of Sydney Why you don ‘ t need to use RPD Pedometron 2013 33 14 15
Bellon-Maurel V. Fernandez-Ahumada E. Palagos B. Roger J. M. McBratney A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy TrAC, Trends Anal. Chem. 2010 29 9 1073 1081 https://dx.doi.org/10.1016/j.trac.2010.05.006 10.1016/j.trac.2010.05.006