Effect of heat and relative humidity treatment on γ-aminobutyric acid accumulation, other micronutrients contents, antioxidant activities and physicochemical properties of mung bean (Vigna radiata L.)
Ma, Yuling; Tong, Litao; Wang, Shanshanet al.
2022 • In International Journal of Food Science and Technology
Blecker, Christophe ; Université de Liège - ULiège > Département GxABT > SMARTECH
Language :
English
Title :
Effect of heat and relative humidity treatment on γ-aminobutyric acid accumulation, other micronutrients contents, antioxidant activities and physicochemical properties of mung bean (Vigna radiata L.)
Publication date :
06 October 2022
Journal title :
International Journal of Food Science and Technology
Al-Ansi, W., Mahdi, A.A., Al-Maqtari, Q.A. et al. (2020). The potential improvements of naked barley pretreatments on GABA, β-glucan, and antioxidant properties. LWT- Food Science and Technology, 130, 109698.https://doi.org/10.1016/j.lwt.2020.109698.
Ali, N.M., Yeap, S.K., Yusof, H.M. et al. (2016). Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean. Journal of the Science of Food & Agriculture, 96(5), 1648-1658. https://doi.org/10.1002/jsfa.7267.
Castañeda-Ovando, A., Pacheco-Hernández, M.L., Páez-Hernández, M.E., Rodríguez, J.A. & Galán-Vidal, C.A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001.
Chen, Y., Zhang, H., Wang, Y.X., Nie, S.P., Li, C. & Xie, M.Y. (2014). Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chemistry, 156, 279-288. https://doi.org/10.1016/j.foodchem.2014.01.111.
Diez-Gutiérrez, L., San Vicente, L., R. Barrón, L. J., Villarán, M. D. C. & Chávarri, M. (2020). Gamma-aminobutyric acid and probiotics: Multiple health benefits and their future in the global functional food and nutraceuticals market. Journal of Functional Foods, 64, 103669-https://doi.org/10.1016/j.jff.2019.103669.
Fait, A., Fromm, H., Walter, D., Galili, G. & Fernie, A.R. (2008). Highway or byway: the metabolic role of the GABA shunt in plants. Trends in Plant Science, 13(1), 14-19. https://doi.org/10.1016/j.tplants.2007.10.005.
Fukumori, T., Kanemoto, S., Mizuno, H., Wakabayashi, K., Liu, H.Q. & Ochiai, S. (2013). Grain or legume having increased content of functional component and a manufacturing method thereof. US8399037B2.
Ganesan, K. & Xu, B.J. (2018). A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness, 7(1), 11-33. https://doi.org/10.1016/j.fshw.2017.11.002.
Garzón, A.G. & Drago, S.R. (2018). Free α-amino acids, γ-Aminobutyric acid (GABA), phenolic compounds and their relationships with antioxidant properties of sorghum malted in different conditions. Journal of Food Science & Technology, 55(8), 3188-3198. https://doi.org/10.1007/s13197-018-3249-0.
Gómez-Favela, M.A., Gutiérrez-Dorado, R., Cuevas-Rodríguez, E.O. et al. (2017). Improvement of chia seeds with antioxidant activity, GABA, essential amino acids, and dietary fiber by controlled germination bioprocess. Plant Foods for Human Nutrition, 72(4), 345-352. https://doi.org/10.1007/s11130-017-0631-4.
Hosseinian, F.S., Li, W. & Beta, T. (2008). Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chemistry, 109(4), 916-924. https://doi.org/10.1016/j.foodchem.2007.12.083.
Huang, T.T., Zhou, D.N., Jin, Z.Y., Xu, X.M. & Chen, H.Q. (2016). Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids, 54, 202-210. https://doi.org/10.1016/j.foodhyd.2015.10.002.
Katopo, H., Song, Y. & Jane, J.-L. (2002). Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydrate Polymers, 47(3), 233–244. https://doi.org/10.1016/S0144-8617(01)00168-0.
Kim, H.S., Lee, E.J., Lim, S.-T. & Han, J.-A. (2015). Self-enhancement of GABA in rice bran using various stress treatments. Food Chemistry, 172, 657-662. https://doi.org/10.1016/j.foodchem.2014.09.107.
Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N. & Kimura, T. (2007). Effect of soaking and gaseous treatment on GABA content in germinated brown rice. Journal of Food Engineering, 78(2), 556-560. https://doi.org/10.1016/j.jfoodeng.2005.10.036.
Lamberts, L., Rombouts, I., Brijs, K., Gebruers, K. & Delcour, J.A. (2008). Impact of parboiling conditions on Maillard precursors and indicators in long-grain rice cultivars. Food Chemistry, 110(4), 916-922. https://doi.org/10.1016/j.foodchem.2008.02.080.
Li, M., Zhu, K.X., Wang, B.W., Guo, X.N., Peng, W. & Zhou, H.M. (2012). Evaluation the quality characteristics of wheat flour and shelf-life of fresh noodles as affected by ozone treatment. Food Chemistry, 135(4), 2163-2169. https://doi.org/10.1016/j.foodchem.2012.06.103.
Li, S., Ward, R. & Gao, Q. (2011a). Effect of heat-moisture treatment on the formation and properties of resistant starches from mung bean (Phaseolus radiatus) starch. Food Hydrocolloids, 25, 1702-1709. https://doi.org/10.1016/j.foodhyd.2011.03.009.
Li, W., Zhang, F., Liu, P., Bai, Y., Gao, L. & Shen, Q. (2011b). Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch. Journal of Food Engineering, 103(4), 388-393. https://doi.org/10.1016/j.jfoodeng.2010.11.008.
Liang, S., Su, C., Saleh, A.S.M. et al. (2020). Repeated and continuous dry heat treatments induce changes in physicochemical and digestive properties of mung bean starch. Journal of Food Processing and Preservation, 45, e15281. https://doi.org/10.1111/jfpp.15281.
Liao, W.C., Wang, C.Y., Shyu, Y.T., Yu, R.C. & Ho, K.C. (2013). Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. Journal of Functional Foods, 5(3), 1108-1115. https://doi.org/10.1016/j.jff.2013.03.006.
Liu, K. & Liu, Q. (2020). Enzymatic determination of total starch and degree of starch gelatinization in various products. Food Hydrocolloids, 103, 105639. https://doi.org/10.1016/j.foodhyd.2019.105639.
Liu, Y., Xu, M., Wu, H. et al. (2018). The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. Journal of Food Science & Technology, 55(12), 5142-5152. https://doi.org/10.1007/s13197-018-3460-z.
Ma, Y., Tong, L., Li, J. et al. (2021). Comparison of γ-aminobutyric acid accumulation capability in different mung bean (Vigna radiata L.) varieties under heat and relative humidity treatment, and its correlation with endogenous amino acids and polyamines. International Journal of Food Science & Technology, 56, 1562-1573.
Marti, A. & Pagani, M.A. (2013). What can play the role of gluten in gluten free pasta? Trends in Food Science & Technology, 31(1), 63-71. https://doi.org/10.1016/j.tifs.2013.03.001.
Nikmaram, N., Dar, B.N., Roohinejad, S. et al. (2017). Recent advances in γ-aminobutyric acid (GABA) properties in pulses: an overview. Journal of the Science of Food and Agriculture, 97, 2681-2689.
Perales-Sánchez, J.X.K., Reyes-Moreno, C., Gómez-Favela, M.A. et al. (2014). Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods for Human Nutrition, 69(3), 196-202. https://doi.org/10.1007/s11130-014-0430-0.
Platell, C., Kong, S.-E., Mccauley, R. & Hall, J.C. (2000). Branched-chain amino acids. Journal of Gastroenterology and Hepatology, 15(7), 706-717. https://doi.org/10.1046/j.1440-1746.2000.02205.x.
Podlešáková, K., Ugena, L., Spíchal, L., Doležal, K. & Diego, N.D. (2019). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnology, 48, 53-65. https://doi.org/10.1016/j.nbt.2018.07.003.
Wang, S., Zhang, X., Wang, S. & Copeland, L. (2016). Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization. Scientific Reports, 6(1), 28271. https://doi.org/10.1038/srep28271.
Wu, H., Rui, X., Li, W., Chen, X., Jiang, M. & Dong, M. (2015). Mung bean (Vigna radiata) as probiotic food through fermentation with Lactobacillus plantarum B1–6. LWT - Food Science and Technology, 63, 445–451. https://doi.org/10.1016/j.lwt.2015.03.011.
Yang, R.Q., Guo, Q.H. & Gu, Z.X. (2013). GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia. Food Chemistry, 136, 152–159. https://doi.org/10.1016/j.foodchem.2012.08.008.
Yao, Y., Chen, X. Z. & Ren, G. X (2011). Contents of D-chiro-inositol, vitexin, and isovitexin in various varieties of mung bean and its products. Agricultural Sciences in China, 10, 1710–1715. https://doi.org/10.1016/S1671-2927(11)60169-7.
Yao, Y., Sang, W., Zhou, M. J. & Ren, G. X. (2010). Phenolic composition and antioxidant activities of 11 celery cultivars. Journal of Food Science, 75, C9–C13. https://doi.org/10.1111/j.1750-3841.2009.01392.x.
Zhao, G. C., Xie, M. X., Wang, Y. C. & Li, J. Y. (2017). Molecular mechanisms underlying γ-aminobutyric acid (GABA) accumulation in giant embryo rice seeds. Journal of Agricultural and Food Chemistry, 65, 4883–4889. https://doi.org/10.1021/acs.jafc.7b00013.
Zhu, Y. S., Sun, S. & Richard, F.G. (2018). Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food & Nutrition Research, 62, 1290. https://doi.org/10.29219/fnr.v62.1290.