Ahern, R.J., Hanrahan, J.P., Tobin, J.M., Ryan, K.B., Crean, A.M., Comparison of fenofibrate-mesoporous silica drug-loading processes for enhanced drug delivery. Eur. J. Pharm. Sci. 50:3-4 (2013), 400–409, 10.1016/j.ejps.2013.08.026.
Antonino, R.S.C.M.Q., Ruggiero, M., Song, Z., Nascimento, T.L., Lima, E.M., Bohr, A., Knopp, M.M., Löbmann, K., Impact of drug loading in mesoporous silica-amorphous formulations on the physical stability of drugs with high recrystallization tendency. Int. J. Pharm. X, 1, 2019, 100026, 10.1016/j.ijpx.2019.100026.
Azad, M., Moreno, J., Davé, R., Stable and Fast-Dissolving Amorphous Drug Composites Preparation via Impregnation of Neusilin® UFL2. J. Pharm. Sci. 107:1 (2018), 170–182, 10.1016/j.xphs.2017.10.007.
Babonneau, F., Camus, L., Steunou, N., Ramila, A., Vallet-Regi, M., Encapsulation of ibuprofen in mesoporous silica: Solid state NMR characterization. Mater. Res. Soc. Symp. - Proc. 775 (2003), 77–82, 10.1557/proc-775-p3.26.
Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 114:27 (1992), 10834–10843, 10.1021/ja00053a020.
Cha, K.H., Cho, K.J., Kim, M.S., Kim, J.S., Park, H.J., Park, J., Cho, W., Park, J.S., Hwang, S.J., Enhancement of the dissolution rate and bioavailability of fenofibrate by a melt-adsorption method using supercritical carbon dioxide. Int. J. Nanomed. 7 (2012), 5565–5575, 10.2147/IJN.S36939.
Charoenchaitrakool, M., Dehghani, F., Foster, N.R., Chan, H.K., Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind. Eng. Chem. Res. 39:12 (2000), 4794–4802, 10.1021/ie000151a.
Chaudhari, S.P., Gupte, A., 2017. Mesoporous silica as a carrier for amorphous solid dispersion. arXiv 16, 1–19. https://doi.org/10.9734/bjpr/2017/33553.
Corma, A., From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97:6 (1997), 2373–2420, 10.1021/cr960406n.
De Juan, F., Ruiz-Hitzky, E., Selective functionalization of mesoporous silica. Adv. Mater. 12 (2000), 430–432, 10.1002/(SICI)1521-4095(200003)12:6<430::AID-ADMA430>3.0.CO;2-3.
Delle Piane, M., Corno, M., Pedone, A., Dovesi, R., Ugliengo, P., Large-scale B3LYP simulations of ibuprofen adsorbed in MCM-41 mesoporous silica as drug delivery system. J. Phys. Chem. C 118:46 (2014), 26737–26749, 10.1021/jp507364h.
Dening, T.J., Taylor, L.S., Supersaturation Potential of Ordered Mesoporous Silica Delivery Systems. Part 1: Dissolution Performance and Drug Membrane Transport Rates. Mol. Pharm. 15:8 (2018), 3489–3501, 10.1021/acs.molpharmaceut.8b00488.
Gignone, A., Delle Piane, M., Corno, M., Ugliengo, P., Onida, B., Simulation and Experiment Reveal a Complex Scenario for the Adsorption of an Antifungal Drug in Ordered Mesoporous Silica. J. Phys. Chem. C 119:23 (2015), 13068–13079, 10.1021/acs.jpcc.5b02666.
Gonzalez, G., Sagarzazu, A., Zoltan, T., Infuence of Microstructure in Drug Release Behavior of Silica Nanocapsules. J. Drug Deliv. 2013 (2013), 1–8, 10.1155/2013/803585.
Gurikov, P., Smirnova, I., Amorphization of drugs by adsorptive precipitation from supercritical solutions: A review. J. Supercrit. Fluids 132 (2018), 105–125, 10.1016/j.supflu.2017.03.005.
Hate, S.S., Reutzel-Edens, S.M., Taylor, L.S., Influence of Drug-Silica Electrostatic Interactions on Drug Release from Mesoporous Silica-Based Oral Delivery Systems. Mol. Pharm. 17:9 (2020), 3435–3446, 10.1021/acs.molpharmaceut.0c00488.
Hempel, N.-J., Brede, K., Olesen, N.E., Genina, N., Knopp, M.M., Löbmann, K., A fast and reliable DSC-based method to determine the monomolecular loading capacity of drugs with good glass-forming ability in mesoporous silica. Int. J. Pharm. 544:1 (2018), 153–157, 10.1016/j.ijpharm.2018.04.035.
Horcajada, P., Rámila, A., Boulahya, K., González-Calbet, J., Vallet-Regí, M., Bioactivity in ordered mesoporous materials. Solid State Sci. 6:11 (2004), 1295–1300, 10.1016/j.solidstatesciences.2004.07.026.
Jennotte, O., Koch, N., Lechanteur, A., Evrard, B., Three-dimensional printing technology as a promising tool in bioavailability enhancement of poorly water-soluble molecules: A review. Int. J. Pharm., 580, 2020, 119200, 10.1016/j.ijpharm.2020.119200.
Jermain, S.V., Brough, C., Williams, R.O., Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – An update. Int. J. Pharm. 535:1-2 (2018), 379–392, 10.1016/j.ijpharm.2017.10.051.
Kim, J.-T., Kim, H.-L., Ju, C.-S., Micronization and characterization of drug substances by RESS with supercritical CO2. Korean J. Chem. Eng. 27:4 (2010), 1139–1144, 10.1007/s11814-010-0219-2.
Koch, N., Jennotte, O., Gasparrini, Y., Vandenbroucke, F., Lechanteur, A., Evrard, B., Cannabidiol aqueous solubility enhancement: Comparison of three amorphous formulations strategies using different type of polymers. Int. J. Pharm., 589, 2020, 119812, 10.1016/j.ijpharm.2020.119812.
Koch, N., Jennotte, O., Grignard, B., Lechanteur, A., Evrard, B., Impregnation of mesoporous silica with poor aqueous soluble molecule using pressurized carbon dioxide: Is the solubility in the supercritical and subcritical phase a critical parameter?. Eur. J. Pharm. Sci., 150, 2020, 105332, 10.1016/j.ejps.2020.105332.
Kresge, C., Leonowicz, M., Roth, W., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992.
Laitinen, R., Löbmann, K., Strachan, C.J., Grohganz, H., Rades, T., Emerging trends in the stabilization of amorphous drugs. Int. J. Pharm. 453:1 (2013), 65–79, 10.1016/j.ijpharm.2012.04.066.
Le, T.-T., Elzhry Elyafi, A.K., Mohammed, A.R., Al-Khattawi, A., Delivery of poorly soluble drugs via mesoporous silica: Impact of drug overloading on release and thermal profiles. Pharmaceutics, 11(6), 2019, 269, 10.3390/pharmaceutics11060269.
Lehto, V.-P., Riikonen, J., Drug loading and characterization of porous silicon materials. Porous Silicon for Biomedical Applications, 2014, Elsevier, 337–355 10.1533/9780857097156.3.337.
Li, W., Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chem. Commun. 49:10 (2013), 943–946, 10.1039/C2CC36964H.
Ma, X., Feng, H., Liang, C., Liu, X., Zeng, F., Wang, Y., Mesoporous silica as micro/nano-carrier: From passive to active cargo delivery, a mini review. J. Mater. Sci. Technol. 33:10 (2017), 1067–1074, 10.1016/j.jmst.2017.06.007.
Macnaughton, S.J., Kikic, I., Foster, N.R., Alessi, P., Cortesi, A., Colombo, I., Solubility of anti-inflammatory drugs in supercritical carbon dioxide. J. Chem. Eng. Data 41:5 (1996), 1083–1086, 10.1021/je960103q.
Maleki, A., Kettiger, H., Schoubben, A., Rosenholm, J.M., Ambrogi, V., Hamidi, M., Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J. Control. Release 262 (2017), 329–347, 10.1016/j.jconrel.2017.07.047.
McCusker, L.B., Liebau, F., Engelhardt, G., Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts: (IUPAC recommendations 2001). Pure Appl. Chem. 73 (2001), 381–394, 10.1351/pac200173020381.
Musso, G.E., Bottinelli, E., Celi, L., Magnacca, G., Berlier, G., Influence of surface functionalization on the hydrophilic character of mesoporous silica nanoparticles. Phys. Chem. Chem. Phys. 17:21 (2015), 13882–13894, 10.1039/C5CP00552C.
Park, H., Cha, K.-H., Hong, S.H., Abuzar, S.M., Ha, E.-S., Kim, J.-S., Kim, M.-S., Hwang, S.-J., Melt amorphisation of orlistat with mesoporous silica using a supercritical carbon dioxide: Effects of pressure, temperature, and drug loading ratio and comparison with other conventional amorphisation methods. Pharmaceutics, 12(4), 2020, 377, 10.3390/pharmaceutics12040377.
Rengarajan, G.T., Enke, D., Steinhart, M., Beiner, M., Stabilization of the amorphous state of pharmaceuticals in nanopores. J. Mater. Chem. 18 (2008), 2537–2539, 10.1039/b804266g.
Riikonen, J., Xu, W., Lehto, V.-P., Mesoporous systems for poorly soluble drugs – recent trends. Int. J. Pharm. 536:1 (2018), 178–186, 10.1016/j.ijpharm.2017.11.054.
Rodriguez-Aller, M., Guillarme, D., Veuthey, J.L., Gurny, R., Strategies for formulating and delivering poorly water-soluble drugs. J. Drug Deliv. Sci. Technol. 30 (2015), 342–351, 10.1016/j.jddst.2015.05.009.
Seljak, K.B., Kocbek, P., Gašperlin, M., Mesoporous silica nanoparticles as delivery carriers: An overview of drug loading techniques. J. Drug Deliv. Sci. Technol., 59, 2020, 101906, 10.1016/j.jddst.2020.101906.
Silaghi, M.C., Chizallet, C., Raybaud, P., Challenges on molecular aspects of dealumination and desilication of zeolites. Micropor. Mesopor. Mater. 191 (2014), 82–96, 10.1016/j.micromeso.2014.02.040.
Sun, D., 2012. Enhanced kientic solubility of indomethacin amorphous solid dispersions in hydrogel.
Takeuchi, H., Nagira, S., Yamamoto, H., Kawashima, Y., Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. Int. J. Pharm. 293:1-2 (2005), 155–164, 10.1016/j.ijpharm.2004.12.019.
Vallet-Regí, M., Balas, F., Arcos, D., Mesoporous materials for drug delivery. Angew. Chemie - Int. Ed. 46:40 (2007), 7548–7558, 10.1002/(ISSN)1521-3773.
Vallet-Regi, M., Rámila, A., Del Real, R.P., Pérez-Pariente, J., A new property of MCM-41: Drug delivery system. Chem. Mater. 13 (2001), 308–311, 10.1021/cm0011559.
Van Hees, T., Barillaro, V., Piel, G., Bertholet, P., De Hassonville, S.H., Evrard, B., Delattre, L., Application of supercritical carbon dioxide for the preparation of drug-cyclodextrin inclusion compounds. J. Incl. Phenom. 44 (2002), 271–274, 10.1023/A:1023084617964.
Speybroeck, M.V., Barillaro, V., Thi, T.D., Mellaerts, R., Martens, J., Humbeeck, J.V., Vermant, J., Annaert, P., Den Mooter, G.V., Augustijns, P., Ordered mesoporous silica material SBA-15: A broad-spectrum formulation platform for poorly soluble drugs. J. Pharm. Sci. 98:8 (2009), 2648–2658, 10.1002/jps.21638.
Vartuli, J.C., Roth, W.J., Beck, J.S., Mccullen, S.B., Kresge, C.T., The Synthesis and Properties of M41S. Mol. Sieves 1 (1998), 97–119.
Vraníková, B., Niederquell, A., Šklubalová, Z., Kuentz, M., Relevance of the theoretical critical pore radius in mesoporous silica for fast crystallizing drugs. Int. J. Pharm., 591, 2020, 120019, 10.1016/j.ijpharm.2020.120019.
Wang, Y., Sun, L., Jiang, T., Zhang, J., Zhang, C., Sun, C., Deng, Y., Sun, J., Wang, S., The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol. Drug Dev. Ind. Pharm. 40:6 (2014), 819–828, 10.3109/03639045.2013.788013.
Waters, L.J., Hanrahan, J.P., Tobin, J.M., Finch, C.V., Parkes, G.M.B., Ahmad, S.A., Mohammad, F., Saleem, M., Enhancing the dissolution of phenylbutazone using Syloid® based mesoporous silicas for oral equine applications. J. Pharm. Anal. 8:3 (2018), 181–186, 10.1016/j.jpha.2018.01.004.
Ye, L., Zhang, S., Wang, Q., Yan, L., Lv, H., Jiang, B.O., Mechanically stable single-layer mesoporous silica antireflective coating on solar glass. RSC Adv. 4:67 (2014), 35818–35822, 10.1039/C4RA05309E.
Zhang, P., Forsgren, J., Strømme, M., Stabilisation of amorphous ibuprofen in Upsalite, a mesoporous magnesium carbonate, as an approach to increasing the aqueous solubility of poorly soluble drugs. Int. J. Pharm. 472:1-2 (2014), 185–191, 10.1016/j.ijpharm.2014.06.025.
Zhang, Z., Pinnavaia, T.J., Mesostructured γ-Al2O3 with a lathlike framework morphology. J. Am. Chem. Soc. 124:41 (2002), 12294–12301, 10.1021/ja0208299.