Eprint already available on another site (E-prints, working papers and research blog)
Simulation-based Bayesian inference for multi-fingered robotic grasping
Marlier, Norman; Bruls, Olivier; Louppe, Gilles
2021
 

Files


Full Text
2109.14275.pdf
Author preprint (5.63 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Multi-fingered grasping; Bayesian inference; Robot learning
Abstract :
[en] Multi-fingered robotic grasping is an undeniable stepping stone to universal picking and dexterous manipulation. Yet, multi-fingered grippers remain challenging to control because of their rich nonsmooth contact dynamics or because of sensor noise. In this work, we aim to plan hand configurations by performing Bayesian posterior inference through the full stochastic forward simulation of the robot in its environment, hence robustly accounting for many of the uncertainties in the system. While previous methods either relied on simplified surrogates of the likelihood function or attempted to learn to directly predict maximum likelihood estimates, we bring a novel simulation-based approach for full Bayesian inference based on a deep neural network surrogate of the likelihood-to-evidence ratio. Hand configurations are found by directly optimizing through the resulting amortized and differentiable expression for the posterior. The geometry of the configuration space is accounted for by proposing a Riemannian manifold optimization procedure through the neural posterior. Simulation and physical benchmarks demonstrate the high success rate of the procedure.
Disciplines :
Mechanical engineering
Computer science
Author, co-author :
Marlier, Norman ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Bruls, Olivier  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Louppe, Gilles  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Language :
English
Title :
Simulation-based Bayesian inference for multi-fingered robotic grasping
Publication date :
2021
Number of pages :
8
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Available on ORBi :
since 15 December 2021

Statistics


Number of views
90 (19 by ULiège)
Number of downloads
53 (9 by ULiège)

Bibliography


Similar publications



Contact ORBi