[en] Dry fermented sausages are produced worldwide by well-controlled fermentationprocesses involving complex microbiota including many bacterial and fungal species with key technological roles. However, to date, fungal diversity on sausage casings during storage has not been fully described. In this context, we studied the microbial communities from dry fermented sausages naturally colonized or voluntarily surface inoculated with molds during storage using both culture-dependent and metabarcoding methods. Staphylococci and lactic acid bacteria largely dominated in samples, although some halotolerant genera (e.g., Halomonas, Tetragenococcus, and Celerinatantimonas spp.) were also frequently observed. Fungal populations varied from 7.2 to 9.8 log TFU/cm2 sausage casing during storage, suggesting relatively low count variability among products. Fungal diversity identified on voluntarily inoculated casings was lower (dominated by Penicillium nalgiovense and Debaryomyces hansenii) than naturally environment-inoculated fermented sausages (colonized by P. nalgiovense, Penicillium nordicum, and other Penicillium spp. and sporadically by Scopulariopsis sp., D. hansenii, and Candida zeylanoïdes). P. nalgiovense and D. hansenii were systematically identified, highlighting their key technological role. The mycotoxin risk was then evaluated, and in situ mycotoxin production of selected mold isolates was determined during pilot-scale sausage productions. Among the identified fungal species, P. nalgiovense was confirmed not to produce mycotoxins. However, some P. nordicum, Penicillium chrysogenum, Penicillium bialowienzense, Penicillium brevicompactum, and Penicillium citreonigrum isolates produced one or more mycotoxins in vitro. P. nordicum also produced ochratoxin A during pilotscale sausage productions using “worst-case” conditions in the absence of biotic competition. These data provide new knowledge on fermented sausage microbiota and the potential mycotoxin risk during storage.
Disciplines :
Food science
Author, co-author :
Coton, Monika
Deniel, Franck
Mounier, Jérôme
Joubrel, Rozenn
Robieu, Emeline
Pawtowski, Audrey
Jeuge, Sabine
Taminiau, Bernard ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Daube, Georges ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Coton, Emmanuel
Frémaux, Bastien
Language :
English
Title :
Microbial Ecology of French Dry Fermented Sausages and Mycotoxin Risk Evaluation During Storage
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alía A. Andrade M. J. Rodríguez A. Reyes-Prieto M. Bernáldez V. Córdoba J. J. (2016). Identification and control of moulds responsible for black spot spoilage in dry-cured ham. Meat Sci. 122 16–24. 10.1016/j.meatsci.2016.07.007 27468139
Altschul S. F. Gish W. Miller W. Myers E. W. Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 403–410. 10.1016/S0022-2836(05)80360-2
Amadoro C. Rossi F. Piccirilli M. Colavita G. (2015). Tetragenococcus koreensis is part of the microbiota in a traditional Italian raw fermented sausage. Food Microbiol. 50 78–82. 10.1016/j.fm.2015.03.011 25998818
Andersen S. (1995). Taxonomy of Penicillium nalgiovense isolates from mould-fermented sausages. Anton. Leeuw. 68 165–171. 10.1007/BF00873102 8546454
ANSES (2009). Évaluation des Risques liés à la Présence de Mycotoxines dans les Chaînes Alimentaires Humaine et Animale, Bilan des Connaissances. Buenos Aires: ANSES.
Aquilanti L. Garofalo C. Osimani A. Clementi F. (2016). Ecology of lactic acid bacteria and coagulase-negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: an overview. Int. Food Res. J. 23 429–445.
Asefa D. T. Kure C. F. Gjerde R. O. Omer M. K. Langsrud S. Nesbakken T. et al. (2010). Fungal growth pattern, sources and factors of mould contamination in a dry-cured meat production facility. Int. J. Food Microbiol. 140 131–135. 10.1016/j.ijfoodmicro.2010.04.008 20442004
Battilani P. Pietri A. Giorni P. Formenti S. Bertuzzi T. Toscani T. et al. (2007). Penicillium populations in dry-cured ham manufacturing plants. J. Food Prot. 70 975–980. 10.4315/0362-028X-70.4.975 17477269
Bengtsson-Palme J. Ryberg M. Hartmann M. Branco S. Wang Z. Godhe A. et al. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4 914–919. 10.1111/2041-210X.12073
Callahan B. J. McMurdie P. J. Rosen M. J. Han A. W. Johnson A. J. A. Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13 581–583. 10.1038/nmeth.3869 27214047
Canel R. Wagner J. Steinglein S. Ludemann V. (2013). Indigenous filamentous fungi on the surface of Argentinean dry fermented sausages produced in Colonia Caroya (Cordoba). Int. J. Food Microbiol. 164 81–86. 10.1016/j.ijfoodmicro.2013.03.022 23612319
Caporaso J. G. Kuczynski J. Stombaugh J. Bittinger K. Bushman F. D. Costello E. K. et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336. 10.1038/nmeth.f.303 20383131
Castegnaro M. Pfohl-Leszkowicz A. (2002). “Les mycotoxines: contaminants omnipr sents dans l’alimentation animales et humaines,” in La sécurité alimentaire du consommateur, eds Moll M. Moll N. (Londres: Tec & doc, Lavoisier), 127–179.
Coton M. Dantigny P. (2019). Mycotoxin migration in moldy foods. Curr. Opin. Food Sci. 29 88–93. 10.1016/j.cofs.2019.08.007
Coton M. Auffret A. Poirier E. Debaets S. Coton E. Dantigny P. (2019). Production and migration of ochratoxin A and citrinin in Comté cheese by an isolate of Penicillium verrucosum selected among Penicillium spp. mycotoxin producers in YES medium. Food Microbiol. 82 551–559. 10.1016/j.fm.2019.03.026 31027818
Coton M. Bregier T. Poirier E. Debaets S. Arnich N. Coton E. et al. (2020). Production and migration of patulin in Penicillium expansum molded apples during cold and ambient storage. Int. J. Food Microbiol. 313:108377. 10.1016/j.ijfoodmicro.2019.108377 31670166
Coton M. Pawtowski A. Taminiau B. Burgaud G. Deniel F. Coulloumme-Labarthe L. et al. (2017). Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 93:fix048. 10.1093/femsec/fix048 28430940
Dijksterhuis J. (2007). Food Mycology: a Multifaceted Approach to Fungi and Food. Bacon Raton, FL: CRC Press. 10.1201/9781420020984
Edgar R. C. Haas B. J. Clemente J. C. Quince C. Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 2194–2200. 10.1093/bioinformatics/btr381 21700674
Escher F. E. Koehler P. E. Ayres J. C. (1973). Production of ochratoxins A and B on country cured ham. Appl. Microbiol. 26 27–30. 10.1128/am.26.1.27-30.1973 4737852
Escoula L. (1992). Patulin production by Penicillium granulatum and inhibition of ruminal flora. J. Environ. Pathol. Toxicol. Oncol. 11 45–48.
Fontaine K. Passeró E. Vallone L. Hymery N. Coton M. Jany J.-L. et al. (2015). Occurrence of roquefortine C, mycophenolic acid and aflatoxin M1 mycotoxins in blue-veined cheeses. Food Cont. 47 634–640. 10.1016/j.foodcont.2014.07.046
Franciosa I. Coton M. Ferrocino I. Corvaglia M. R. Poirier E. Jany J. L. et al. (2021). Mycobiota dynamics and mycotoxin detection in PGI Salame Piemonte. J. Appl. Microbiol. Online ahead of print. 10.1111/jam.15114 33893697
Geisen R. Schmidt-Heydt M. Touhami N. Himmelsbach A. (2018). New aspects of ochratoxin A and citrinin biosynthesis in Penicillium. Curr. Opin. Food Sci. 23 23–31. 10.1016/j.cofs.2018.04.001
Geisen R. Touhami N. Schmidt-Heydt M. (2017). Mycotoxins as adaptation factors to food related environments. Curr. Opin. Food Sci. 17 1–8. 10.1016/j.cofs.2017.07.006
Haas B. J. Gevers D. Earl A. M. Feldgarden M. Ward D. V. Giannoukos G. et al. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21 494–504. 10.1101/gr.112730.110 21212162
Hymery N. Vasseur V. Coton M. Mounier J. Jany J.-L. Barbier G. et al. (2014). Filamentous fungi and mycotoxins in cheese: a review. Comp. Rev. Food Sci. Food Saf. 13 437–456. 10.1111/1541-4337.12069 33412699
Iacumin L. Chiesa L. Boscolo D. Manzano M. Cantoni C. Orlic S. et al. (2009). Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiol. 1 65–70. 10.1016/j.fm.2008.07.006 19028307
ICH Harmonised Tripartite Guideline. (2005). “Validation of Analytical Procedures: Text and Methodology Q2(R1),” in Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (Geneva) 1–13.
Jagielski T. Sandoval-Denis M. Yu J. Yao L. Bakula Z. Kalita J. et al. (2016). Molecular taxonomy of scopulariopsis-like fungi with description of new clinical and environmental species. Fungal Biol. 120 586–602. 10.1016/j.funbio.2016.01.014 27020159
Kümmerle M. Siegfried S. Herbert S. (1998). Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Appl. Environ. Microbiol. 64 2207–2214. 10.1128/AEM.64.6.2207-2214.1998 9603836
Kurtzman C. P. Robnett C. J. (1997). Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5’ end of the large-subunit (26S) ribosomal DNA gene. J. Clin. Microbiol. 35 1216–1223. 10.1128/jcm.35.5.1216-1223.1997 9114410
Laich F. Fierro F. Martin J. F. (2003). Isolation of Penicillium nalgiovense strains impaired in penicillin production by disruption of the pcbAB gene and application as starters on cured meat products. Mycol. Res. 107 717–726. 10.1017/S095375620300769X 12951798
López-Díaz T. M. Santos J. A. García-López M. L. Otero A. (2001). Surface mycoflora of a Spanish fermented meat sausage and toxigenicity of Penicillium isolates. Int. J. Food Microbiol. 68 69–74. 10.1016/S0168-1605(01)00472-X
Lozano-Ojalvo D. Rodrıguez A. Cordero M. Bernaldez V. Reyes-Prieto M. Cordoba J. J. (2015). Characterisation and detection of spoilage mould responsible for black spot in dry-cured fermented sausages. Meat Sci. 100 283–290. 10.1016/j.meatsci.2014.10.003 25460138
Ludemann V. Pose G. Moavro A. Malaviabarrena M. Fandino R. Ripoll G. et al. (2009). Toxicological assessment of Penicillium nalgiovense strains for use as starters culture in the manufacture of dry fermented sausages. J. Food Prot. 8 1596–1801. 10.4315/0362-028X-72.8.1666 19722398
Ludemann V. Pose G. Pollio M. Segura J. (2004). Surface mycoflora of Argentinean dry fermented sausages and toxigenicity of Penicillium isolates. Int. J. Food Technol. 2 288–292.
Magista D. Ferrara M. Del Nobile M. A. Gammariello D. Conte A. Perrone G. (2016). Penicillium salamii strain ITEM 15302: a new promising fungal starter for salami production. Int. J. Food Microbiol. 231 33–41. 10.1016/j.ijfoodmicro.2016.04.029 27183229
Magista‘ D. Susca A. Ferrara M. Logrieco A. F. Perrone G. (2017). Penicillium species: crossroad between quality and safety of cured meat production. Curr. Opin. Food Sci. 17 36–40. 10.1016/j.cofs.2017.09.007
Martin A. Cordoba J. J. Aranda E. Cordoba M. G. Asensio M. A. (2006). Contribution of a selected fungal population to the volatile compounds on dry-cured ham. Int. J. Food Microbiol. 110 8–18. 10.1016/j.ijfoodmicro.2006.01.031 16564595
McDonald D. Price M. N. Goodrich J. Nawrocki E. P. DeSantis T. Z. Probst A. et al. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6 610–618. 10.1038/ismej.2011.139 22134646
Meftah S. Abid S. Dias T. Rodrigues P. (2018). Effect of dry-sausage starter culture and endogenous yeasts on Aspergillus westerdijkiae and Penicillium nordicum growth and OTA production. LWT Food Sci. Technol. 87 250–258. 10.1016/j.lwt.2017.08.090
Montanha F. P. Anater A. Burchard J. F. Luciano F. B. Meca G. Manyes L. et al. (2018). Mycotoxins in dry-cured meats: a review. Food Chem. Toxicol. 111 494–502. 10.1016/j.fct.2017.12.008 29217267
Murgia M. A. Marongiu A. Aponte M. Blaiotta G. Deiana P. Mangia N. P. (2019). Impact of a selected Debaryomyces hansenii strain’s inoculation on the quality of Sardinian fermented sausages. Food Res. Int. 121 144–150. 10.1016/j.foodres.2019.03.042 31108735
Núñez F. Lara M. S. Peromingo B. Delgado J. Sánchez-Montero L. Andrade M. J. (2015). Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food Microbiol. 46 114–120.
Official Journal of the European Union (2006). European Union, Commission Regulation (EC) No. 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. European Union: Official Journal of the European Union
Ojha K. S. Kerry J. P. Duffy G. Beresford T. Tiwari B. K. (2015). Technological advances for enhancing quality and safety of fermented meat products. Trends Food Sci. Technol. 44 105–116. 10.1016/j.tifs.2015.03.010
Parks D. H. Beiko R. G. (2010). Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26 715–721. 10.1093/bioinformatics/btq041 20130030
Parussolo G. Oliveira M. S. Garcia M. V. Bernardi A. O. Lemos J. G. Stefanello A. (2019). Ochratoxin a production by Aspergillus westerdijkiae in Italian-type salami. Food Microbiol. 83 134–140. 10.1016/j.fm.2019.05.007 31202404
Penland M. Deutsch S.-M. Falentin H. Pawtowski A. Poirier E. Visenti G. et al. (2020). Deciphering microbial community dynamics and biochemical changes during nyons black olive natural fermentations. Front. Microbiol. 11:586614. 10.3389/fmicb.2020.586614 33133054
Peromingo B. Andrade M. J. Delgado J. Sánchez-Montero L. Núñez F. (2019a). Biocontrol of aflatoxigenic Aspergillus parasiticus by native Debaryomyces hansenii in dry-cured meat products. Food Microbiol. 82 269–276. 10.1016/j.fm.2019.01.024 31027783
Peromingo B. Sulyok M. Lemmens M. Rodriguez A. Rodriguez M. (2019b). Diffusion of mycotoxins and secondary metabolites in dry-cured meat products. Food Contam. 101 144–150. 10.1016/j.foodcont.2019.02.032
Perrone G. (2017). Penicillium species: crossroad between quality and safety of cured meat production. Curr. Opin. Food Sci. 17 36–40. 10.1016/j.cofs.2017.09.007
Perrone G. Samson R. A. Frisvad J. C. Susca A. Gunde-Cimerman N. Epifani F. et al. (2015). Penicillium salamii, a new species occurring during seasoning of dry-cured meat. Int. J. Food Microbiol. 193 91–98. 10.1016/j.ijfoodmicro.2014.10.023 25462928
Pitt J. I. Hocking A. D. (2009). Fungi and Food Spoilage, 3rd Edn. Berlin: Springer. 10.1007/978-0-387-92207-2
Pohland A. E. Nesheim S. Friedman L. (1992). Ochratoxin a, a review. Appl. Chem. 64 1029–1046. 10.1351/pac199264071029
R Core Team (2017). R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Ropars J. Cruad C. Lacoste S. Dupont J. (2012). A taxonomic and ecological overview of cheese fungi. Int. J. Food Microbiol. 155 199–210. 10.1016/j.ijfoodmicro.2012.02.005 22381457
Samson R. A. Hoekstra E. S. Frisvad J. C. Filtenborg O. (2004). Introduction to Food and Airborne Fungi, 7th Edn. Centraalbureau Voor Schimmelcultures Wageningen: Netherlands.
Samson R. A. Houbraken J. Thrane U. Frisvad J. C. Andersen B. (2010). Food and Indoor Fungi, CBS Laboratory Manual Series 2. Utrecht: CBS-Fungal Biodiversity Centre.
Sánchez-Montero L. Córdoba J. J. Peromingo B. Álvarez M. Núñez F. (2019). Effects of environmental conditions and substrate on growth and ochratoxin a production by Penicillium verrucosum and Penicillium nordicum: relative risk assessment of OTA in dry-cured meat products. Food Res. Int. 121 604–611. 10.1016/j.foodres.2018.12.025 31108787
Sawada K. Koyano H. Yamamoto N. Yamada T. (2021). The relationships between microbiota and the amino acids and organic acids in commercial vegetable pickle fermented in rice-bran beds. Sci. Rep. 11:1791. 10.1038/s41598-021-81105-x 33469050
Schmidt-Heydt M. Graf E. Stoll D. Geisen R. (2012). The biosynthesis of ochratoxin a by Penicillium as one mechanism for adaptation to NaCl rich foods. Food Microbiol. 2 233–241. 10.1016/j.fm.2011.08.003 22202878
Shah N. Nute M. G. Warnow T. Pop M. (2019). Misunderstood parameter of NCBI BLAST impacts the correctness of bioinformatics workflows. Bioinformatics 35 1613–1614. 10.1093/bioinformatics/bty833 30247621
Sitdhipol J. Tanasupawat S. Tepkasikul P. Yukphan P. Tosukhowong A. Itoh T. et al. (2013). Identification and histamine formation of Tetragenococcus isolated from Thai fermented food products. Ann. Microbiol. 63 745–753. 10.1007/s13213-012-0529-1
Sonjak S. Lièen M. Frisvad J. C. Gunde-Cimerman N. (2011). The mycobiota of three dry-cured meat products from Slovenia. Food Microbiol. 28 373–376. 10.1016/j.fm.2010.09.007 21356440
Sørensen L. M. Jacobsen T. Nielsen P. V. Frisvad J. C. Koch A. G. (2008). Mycobiota in the processing areas of two different meat products. Int. J. Food Microbiol. 124 58–64. 10.1016/j.ijfoodmicro.2008.02.019 18367279
Sunesen L. O. Stahnke L. H. (2003). Mould starter cultures for dry sausages - Selection, application and effects. Meat Sci. 65 935–948. 10.1016/S0309-1740(02)00281-4
Tabuc C. Bailly J.-D. Bailly S. Querin A. Guerre P. (2004). Toxigenic potential of fungal mycoflora isolated from dry cured meat products: preliminary study. Rev. Med. Vet. 156:287.
Unite Community. (2017). UNITE general FASTA release. Shadwell: UNITE Community, 10.15156/BIO/587475
Unite Community (2019). UNITE General FASTA Release for Fungi. Version 18.11.2018.
Van Reckem E. Charmpi C. Van der Veken D. Borremans W. De Vuyst L. Weckx S. et al. (2020). Application of a high-throughput amplicon sequencing method to chart the bacterial communities that are associated with european fermented meats from different origins. Foods. 9:1247. 10.3390/foods9091247 32906631
Van Reckem E. Geeraerts W. Charmpi C. Van der Veken D. De Vuyst L. Leroy F. (2019). Exploring the link between the geographical origin of European fermented foods and the diversity of their bacterial communities: the case of fermented meats. Front. Microbiol. 10:2302. 10.3389/fmicb.2019.02302 31649643
Vila G. Segura J. A. Ludemann V. Pose G. N. (2019). Surface mycobiota of home-made dry cured sausages from the main producing regions of Argentina and morphological and biochemical characterization of Penicillium nalgiovense populations. Int. J. Food Microbiol. 309:108312. 10.1016/j.ijfoodmicro.2019.108312 31499265
Wang Q. Garrity G. M. Tiedje J. M. Cole J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73 5261–5267.
Woudenberg J. H. C. Meijer M. Houbraken J. Samson R. A. (2017). Scopulariopsis and scopulariopsis-like species from indoor environments. Stud. Mycol. 88 1–35. 10.1016/j.simyco.2017.03.001 28413236
Wu M. T. Ayres J. C. Koehler P. E. (1974). Toxigenic Aspergilli and Penicillia isolated from aged cured meats. Appl. Microbiol. 28 1094–1096. 10.1128/am.28.6.1094-1096.1974 4451371
Yunita D. Dodd C. E. R. (2018). Microbial community dynamics of a blue-veined raw milk cheese from the United Kingdom. J. Dairy Sci. 101 4923–4935. 10.3168/jds.2017-14104 29550118
Zakrzewski M. Proietti C. Ellis J. J. Hasan S. Brion M.-J. Berger B. et al. (2017). Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions. Bioinformatics 33 782–783. 10.1093/bioinformatics/btw725 28025202
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.