Abstract :
[en] The term “travelling fire” is used to label fires which burn locally and move across the floor
over a period of time in large compartments. Through experimental and numerical campaigns and
while observing the tragic travelling fire events, it became clear that such fires imply a transient heating of the surrounding structure. The necessity to better characterize the thermal impact generated on the structure by a travelling fire motivated the development of an analytical model allowing to capture, in a simple manner, the multidimensional transient heating of a structure considering the effect of the ventilation. This paper first presents the basic assumptions of a new analytical model which is based on the virtual solid flame concept; a comparison of the steel temperatures measured during a travelling fire test in a steel-framed building with the ones obtained analytically is then presented. The limitations inherent to the analyticity of the model are also discussed. This paper suggests that the developed analytical model can allow for both an acceptable representation of the travelling fire in terms of fire spread and steel temperatures while not being computationally demanding, making it potentially desirable for pre-design.
Scopus citations®
without self-citations
6