Gut microbiota, body weight and histopathological examinations in experimental infection by methicillin-resistant Staphylococcus aureus: antibiotic versus bacteriocin.
Bendjeddou, K.; Hamma-Faradji, S.; Meddour, A. Aitet al.
[en] Bacteriocins have been steadily reported as potential agents that may contribute, in different ways, to overcome antimicrobial drug resistance. Here, holoxenic NMRI-F mice microbiota, their body weight recovery and histopathological alterations of organs like colon, spleen and liver were examined in mice intraperitoneally infected with 10(8) cfu of a clinical methicillin-resistant Staphylococcus aureus (MRSA-1), and treated with enterocin DD14 alone (165 mg/kg), erythromycin alone (100 mg/kg) or their combination. Animals that received both antimicrobials presented a better body weight recovery than other groups. Less pronounced histopathological alterations were observed in mice MRSA-infected and treated with bacteriocin than in those MRSA-infected but untreated or MRSA-infected and treated with erythromycin. Noteworthy, these alterations were absent when mice were treated with MRSA-infected and treated with both antibacterial agents. Furthermore, the genus richness was significantly lower in mice infected and treated with erythromycin, compared to mice infected and treated with both antimicrobials. The beta-diversity analysis showed that non-infected mice and those infected and treated with both antimicrobials, stand apart from the other groups as supported in a NMDS model. This in vivo study shows the relevance of bacteriocin, or bacteriocin-antibiotic formulation in protecting colonic, liver and spleen soft tissues and controlling the mouse gut microbiota, following MRSA infection.
Disciplines :
Gastroenterology & hepatology
Author, co-author :
Bendjeddou, K.
Hamma-Faradji, S.
Meddour, A. Ait
Belguesmia, Y.
Cudennec, B.
Bendali, F.
Daube, Georges ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Taminiau, Bernard ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Drider, D.
Language :
English
Title :
Gut microbiota, body weight and histopathological examinations in experimental infection by methicillin-resistant Staphylococcus aureus: antibiotic versus bacteriocin.
Al Atya, A.K., Belguesmia, Y., Chataigne, G., Ravallec, R., Vachée, A., Szunerits, S., Boukherroub, R. and Drider, D., 2016. Anti-MRSA activities of enterocins DD28 and DD93 and evidences on their role in the inhibition of biofilm formation. Frontiers in Microbiology 7: 817. https://doi.org/10.3389/fmicb.2016.00817
Bai, J., Hu, Y. and Bruner, D.W., 2019. Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7-18 years old children from the American Gut Project. Pediatric Obesity 14: e12480. https://doi.org/10.1111/ijpo.12480
Baños, A., García, J.D., Núñez, C., Mut-Salud, N., Ananou, S., Martínez-Bueno, M., Maqueda, M., and Valdivia E., 2019. Subchronic toxicity study in BALBc mice of enterocin AS-48, an anti-microbial peptide produced by Enterococcus faecalis UGRA10. Food Chemical Toxicology 132: 110667. https://doi.org/10.1016/j.fct.2019.110667
Barlow, G.M., Yu, A. and Mathur, R., 2015. Role of the gut microbiome in obesity and diabetes mellitus. Nutrition in Clinical Practice 30: 787-797. https://doi.org/10.1177/0884533615609896
Belguesmia, Y., Leclère, V., Duban, M., Auclair, E. and Drider, D., 2017. Draft genome sequence of Enterococcus faecalis DD14, a bacteriocinogenic lactic acid bacterium with anti-Clostridium activity. Genome Announcements 5. https://doi.org/10.1128/genomeA.00695-17
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. https://doi.org/10.1006/abio.1976.9999
Caly, D.L., Chevalier, M., Flahaut, C., Cudennec, B., Al Atya, A.K., Chataigné, G., D’Inca, R., Auclair, E. and Drider, D., 2017. The safe enterocin DD14 is a leaderless two-peptide bacteriocin with anti-Clostridium perfringens activity. International Journal of Antimicrobial Agents 49: 282-289. https://doi.org/10.1016/j.ijantimicag.2016.11.016
CA-SFM, 2019. CASFM/EUCAST 2019. Société Française de Microbiologie. https://www.sfm-microbiologie.org/2019/01/07/casfm-eucast-2019/.
Chen, H. and Hoover, D.G., 2003. Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety 2: 82-100. https://doi.org/10.1111/j.1541-4337.2003.tb00016.x
Cotter, P.D., Ross, R.P. and Hill, C., 2013. Bacteriocins – a viable alternative to antibiotics? Nature Reviews Microbiology 11: 95-105. https://doi.org/10.1038/nrmicro2937
Dabard, J., Bridonneau, C., Phillipe, C., Anglade, P., Molle, D., Nardi, M., Ladiré, M., Girardin, H., Marcille, F., Gomez, A. and Fons, M., 2001. Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Applied and Environmental Microbiology 67: 4111-4118. https://doi.org/10.1128/AEM.67.9.4111-4118.2001
De Almeida Vaucher, R., De Campos Velho Gewehr, C., Folmer Correa, A.P., Sant‘Anna, V., Ferreira, J. and Brandelli, A., 2011. Evaluation of the immunogenicity and in vivo toxicity of the antimicrobial peptide P34. International Journal of Pharmaceutics 421: 94-98. https://doi.org/10.1016/j.ijpharm.2011.09.020
Dischinger, J., Basi Chipalu, S. and Bierbaum, G., 2014. Lantibiotics: promising candidates for future applications in health care. International Journal of Medical Microbiology 304: 51-62. https://doi.org/10.1016/j.ijmm.2013.09.003
Drider, D. and Rebuffat, S., 2011. Prokaryotic antimicrobial peptides – from genes to applications. Springer, New York, NY, USA.
Dumitrescu, O., Dauwalder, O., Boisset, S., Reverdy, M.-É., Tristan, A. and Vandenesch, F., 2010. Résistance aux antibiotiques chez Staphylococcus aureus: les points-clés en 2010. Médecine/Sciences 26: 943-949. https://doi.org/10.1051/medsci/20102611943
Fernandez, B., Le Lay, C., Jean, J. and Fliss, I., 2013. Growth, acid production and bacteriocin production by probiotic candidates under simulated colonic conditions. Journal of Applied Microbiology 114: 877-885. https://doi.org/10.1111/jam.12081
Frazer, A.C., Sharratt, M. and Hickman, J.R., 1962. The biological effects of food additives. I. Nisin. Journal of the Science of Food and Agriculture 13: 32-42. https://doi.org/10.1002/jsfa.2740130106 Fuerst, J.A., 2013. The PVC superphylum: exceptions to the bacterial definition? Antonie Van Leeuwenhoek 104: 451-466. https://doi.org/10.1007/s10482-013-9986-1
Ghobrial, O., Derendorf, H. and Hillman, J.D., 2010. Human serum binding and its effect on the pharmacodynamics of the lantibiotic MU1140. European Journal of Pharmaceutical Sciences 41: 658-664. https://doi.org/10.1016/j.ejps.2010.09.005
Hartley, C.L., Clements, H.M. and Linton, K.B., 1978. Effects of cephalexin, erythromycin and clindamycin on the aerobic Gram-negative faecal flora in man. Journal of Medical Microbiology 11: 125-135. https://doi.org/10.1099/00222615-11-2-125
Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J.H., Chinwalla, A.T., Creasy, H.H., Earl, A.M., FitzGerald, M.G., Fulton, R.S., Giglio, M.G., Hallsworth-Pepin, K., Lobos, E.A., Madupu, R., Magrini, V., Martin, J.C., Mitreva, M., Muzny, D.M., Sodergren, E.J., Versalovic, J., Wollam, A.M., Worley, K.C., Wortman, J.R., Young, S.K., Zeng, Q., Aagaard, K.M., Abolude, O.O., Allen-Vercoe, E., Alm, E.J., Alvarado, L., Andersen, G.L., Anderson, S., Appelbaum, E., Arachchi, H.M., Armitage, G., Arze, C.A., Ayvaz, T., Baker, C.C., Begg, L., Belachew, T., Bhonagiri, V., Bihan, M., Blaser, M.J., Bloom, T., Bonazzi, V., Paul Brooks, J., Buck, G.A., Buhay, C.J., Busam, D.A., Campbell, J.L., Canon, S.R., Cantarel, B.L., Chain, P.S.G., Chen, I.-M.A., Chen, L., Chhibba, S., Chu, K., Ciulla, D.M., Clemente, J.C., Clifton, S.W., Conlan, S., Crabtree, J., Cutting, M.A., Davidovics, N.J., Davis, C.C., DeSantis, T.Z., Deal, C., Delehaunty, K.D., Dewhirst, F.E., Deych, E., Ding, Y., Dooling, D.J., Dugan, S.P., Michael Dunne, W., Scott Durkin, A., Edgar, R.C., Erlich, R.L., Farmer, C.N., Farrell, R.M., Faust, K., Feldgarden, M., Felix, V.M., Fisher, S., Fodor, A.A., Forney, L.J., Foster, L., Di Francesco, V., Friedman, J., Friedrich, D.C., Fronick, C.C., Fulton, L.L., Gao, H., Garcia, N., Giannoukos, G., Giblin, C., Giovanni, M.Y., Goldberg, J.M., Goll, J., Gonzalez, A., Griggs, A., Gujja, S., Kinder Haake, S., Haas, B.J., Hamilton, H.A., Harris, E.L., Hepburn, T.A., Herter, B., Hoffmann, D.E., Holder, M.E., Howarth, C., Huang, K.H., Huse, S.M., Izard, J., Jansson, J.K., Jiang, H., Jordan, C., Joshi, V., Katancik, J.A., Keitel, W.A., Kelley, S.T., Kells, C., King, N.B., Knights, D., Kong, H.H., Koren, O., Koren, S., Kota, K.C., Kovar, C.L., Kyrpides, N.C., La Rosa, P.S., Lee, S.L., Lemon, K.P., Lennon, N., Lewis, C.M., Lewis, L., Ley, R.E., Li, K., Liolios, K., Liu, B., Liu, Y., Lo, C.-C., Lozupone, C.A., Dwayne Lunsford, R., Madden, T., Mahurkar, A.A., Mannon, P.J., Mardis, E.R., Markowitz, V.M., Mavromatis, K., McCorrison, J.M., McDonald, D., McEwen, J., McGuire, A.L., McInnes, P., Mehta, T., Mihindukulasuriya, K.A., Miller, J.R., Minx, P.J., Newsham, I., Nusbaum, C., O’Laughlin, M., Orvis, J., Pagani, I., Palaniappan, K., Patel, S.M., Pearson, M., Peterson, J., Podar, M., Pohl, C., Pollard, K.S., Pop, M., Priest, M.E., Proctor, L.M., Qin, X., Raes, J., Ravel, J., Reid, J.G., Rho, M., Rhodes, R., Riehle, K.P., Rivera, M.C., Rodriguez-Mueller, B., Rogers, Y.-H., Ross, M.C., Russ, C., Sanka, R.K., Sankar, P., Fah Sathirapongsasuti, J., Schloss, J.A., Schloss, P.D., Schmidt, T.M., Scholz, M., Schriml, L., Schubert, A.M., Segata, N., Segre, J.A., Shannon, W.D., Sharp, R.R., Sharpton, T.J., Shenoy, N., Sheth, N.U., Simone, G.A., Singh, I., Smillie, C.S., Sobel, J.D., Sommer, D.D., Spicer, P., Sutton, G.G., Sykes, S.M., Tabbaa, D.G., Thiagarajan, M., Tomlinson, C.M., Torralba, M., Treangen, T.J., Truty, R.M., Vishnivetskaya, T.A., Walker, J., Wang, L., Wang, Z., Ward, D.V., Warren, W., Watson, M.A., Wellington, C., Wetterstrand, K.A., White, J.R., Wilczek-Boney, K., Wu, Y., Wylie, K.M., Wylie, T., Yandava, C., Ye, L., Ye, Y., Yooseph, S., Youmans, B.P., Zhang, L., Zhou, Y., Zhu, Y., Zoloth, L., Zucker, J.D., Birren, B.W., Gibbs, R.A., Highlander, S.K., Methé, B.A., Nelson, K.E., Petrosino, J.F., Weinstock, G.M., Wilson, R.K. and White, O. and the Human Microbiome Project Consortium, 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214. https://doi.org/10.1038/nature11234
Ignacio, A., Fernandes, M.R., Rodrigues, V.A.A., Groppo, F.C., Cardoso, A.L., Avila-Campos, M.J. and Nakano, V., 2016. Correlation between body mass index and faecal microbiota from children. Clinical Microbiology and Infection 22: 258.e1-8. https://doi.org/10.1016/j.cmi.2015.10.031
Ketaren, N.B., Marlida, Y., Arnim, A., Yuherman, Y. and Rusmarilin, H., 2016. Toxicity test pediocin N6 powder produced from isolates Pediococcus pentosaceus strain N6 on white mice. Journal of Food and Pharmaceutical Sciences 4(1).
Kheadr, E., Zihler, A., Dabour, N., Lacroix, C., Le Blay, G. and Fliss, I., 2010. Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model. Journal of Applied Microbiology 109: 54-64. https://doi.org/10.1111/j.1365-2672.2009.04644.x
Köck, R., Becker, K., Cookson, B., Gemert-Pijnen, J.E. van, Harbarth, S., Kluytmans, J., Mielke, M., Peters, G., Skov, R.L., Struelens, M.J., Tacconelli, E., Torné, A.N., Witte, W. and Friedrich, A.W., 2010. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Eurosurveillance 15: 19688. https://doi.org/10.2807/ese.15.41.19688-en
Kumar, V. and Tiwari, S.K., 2017. Halocin HA1: An archaeocin produced by the haloarchaeon Haloferax larsenii HA1. Process Biochemistry 61: 202-208. https://doi.org/10.1016/j.procbio.2017.06.010
Lagier, J.C., Million, M., Hugon, P., Armougom, F. and Raoult, D., 2012. Human gut microbiota: Repertoire and variations. Frontiers in Cellular and Infection Microbiology 2: 136. https://doi.org/10.3389/fcimb.2012.00136
Lange, K., Buerger, M., Stallmach, A. and Bruns, T., 2016. Effects of antibiotics on gut microbiota. Digestive Diseases 34: 260-268. https://doi.org/10.1159/000443360
Langgartner, D., Peterlik, D., Foertsch, S., Füchsl, A.M., Brokmann, P., Flor, P.J., Shen, Z., Fox, J.G., Uschold-Schmidt, N., Lowry, C.A. and Reber, S.O., 2017. Individual differences in stress vulnerability: the role of gut pathobionts in stress-induced colitis. Brain, Behavior, and Immunity 64: 23-32. https://doi.org/10.1016/j.bbi.2016.12.019 Lee, A.S., de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A. and Harbarth, S., 2018. Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers 4: 18033. https://doi.org/10.1038/nrdp.2018.33
Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D.H. and He, Q., 2019. The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research 11: 3919-3931.
Ley, R.E., Bäckhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D. and Gordon, J.I., 2005. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the USA 102: 11070-11075. https://doi.org/10.1073/pnas.0504978102
Ling, L.L., Schneider, T., Peoples, A.J., Spoering, A.L., Engels, I., Conlon, B.P., Mueller, A., Schäberle, T.F., Hughes, D.E., Epstein, S., Jones, M., Lazarides, L., Steadman, V.A., Cohen, D.R., Felix, C.R., Fetterman, K.A., Millett, W.P., Nitti, A.G., Zullo, A.M., Chen, C. and Lewis, K., 2015. A new antibiotic kills pathogens without detectable resistance. Nature 517: 455-459. https://doi.org/10.1038/ nature14098
Lussier, G., 1989. Histologie et histochimie. In: Payment, P. and Trudel, M. (eds.) Manuel de Techniques Virologiques. Presse de Université du Quebec, Sillery, Canada, pp. 63-179.
Maharshak, N., Packey, C.D., Ellermann, M., Manick, S., Siddle, J.P., Huh, E.Y., Plevy, S., Sartor, R.B. and Carroll, I.M., 2013. Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation. Gut Microbes 4: 316-324. https://doi.org/10.4161/gmic.25486
Malachowa, N. and DeLeo, F.R., 2010. Mobile genetic elements of Staphylococcus aureus. Cellular and Molecular Life Sciences 67: 3057-3071. https://doi.org/10.1007/s00018-010-0389-4
Meade, E., Slattery, M.A. and Garvey, M., 2020. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile? Antibiotics 9: 32. https://doi.org/10.3390/antibiotics9010032
Mishra, B., Reiling, S., Zarena, D. and Wang, G., 2017. Host defense antimicrobial peptides as antibiotics: design and application strategies. Current Opinion in Chemical Biology 38: 87-96. https://doi.org/10.1016/j.cbpa.2017.03.014
Mizobuchi, S., Minami, J., Jin, F., Matsushita, O. and Okabe, A., 1994. Comparison of the virulence of methicillin-resistant and methicillin-sensitive Staphylococcus aureus. Microbiology and Immunology 38: 599-605. https://doi.org/10.1111/j.1348-0421.1994.tb01829.x
O’Connor, P.M., Kuniyoshi, T.M., Oliveira, R.P., Hill, C., Ross, R.P. and Cotter, P.D., 2020. Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology 61: 160-167. https://doi.org/10.1016/j.copbio.2019.12.023
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. and Wagner, H., 2019. vegan: Community Ecology Package. Available at: https://cran.r-project.org/web/packages/vegan/index.html
Oksanen, J., Kindt, R. and Simpson, G.L., 2018. vegan3d: static and dynamic 3D plots for the ‘vegan’ package. Available at: https://rdrr.io/cran/vegan3d/
Ołdak, A. and Zielińska, D., 2017. Bacteriocins from lactic acid bacteria as an alternative to antibiotics. Postepy Higieny I Medycyny Doswiadczalnej 71: 328-338. https://doi.org/10.5604/01.3001.0010.3817
O’Neill, J., 2016. Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobial resistance. Wellcome Trust. Available at: https://wellcomecollection.org/works/ thvwsuba
Petersen, P.J., Labthavikul, P., Jones, C.H. and Bradford, P.A., 2006. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. Journal of Antimicrobial Chemotherapy 57: 573-576. https://doi.org/10.1093/jac/dki477
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41: D590-596. https://doi.org/10.1093/nar/gks1219
Renukuntla, J., Vadlapudi, A.D., Patel, A., Boddu, S.H.S. and Mitra, A.K., 2013. Approaches for enhancing oral bioavailability of peptides and proteins. International Journal of Pharmaceutics 447: 75-93. https://doi.org/10.1016/j.ijpharm.2013.02.030
Rizzatti, G., Lopetuso, L.R., Gibiino, G., Binda, C. and Gasbarrini, A., 2017. Proteobacteria: A Common Factor in Human Diseases. BioMed Research International 2017. https://doi.org/10.1155/2017/9351507
Rognes, T., Flouri, T., Nichols, B., Quince, C. and Mahé, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584. https://doi.org/10.7717/peerj.2584
Ruppé, E., Burdet, C., Grall, N., de Lastours, V., Lescure, F.-X., Andremont, A. and Armand-Lefèvre, L., 2018. Impact of antibiotics on the intestinal microbiota needs to be re-defined to optimize antibiotic usage. Clinical Microbiology and Infection 24: 3-5. https://doi.org/10.1016/j.cmi.2017.09.017
Sahoo, T.K., Jena, P.K., Prajapati, B., Gehlot, L., Patel, A.K. and Seshadri, S., 2017. In vivo assessment of immunogenicity and toxicity of the bacteriocin TSU4 in BALB/c mice. Probiotics and Antimicrobial Proteins 9: 345-354. https://doi.org/10.1007/s12602-016-9249-3
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J. and Weber, C.F., 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
Schwiertz, A., Taras, D., Schäfer, K., Beijer, S., Bos, N.A., Donus, C. and Hardt, P.D., 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18: 190-195. https://doi.org/10.1038/oby.2009.167
Seedorf, H., Griffin, N.W., Ridaura, V.K., Reyes, A., Cheng, J., Rey, F.E., Smith, M.I., Simon, G.M., Scheffrahn, R.H., Woebken, D., Spormann, A.M., Van Treuren, W., Ursell, L.K., Pirrung, M., Robbins-Pianka, A., Cantarel, B.L., Lombard, V., Henrissat, B., Knight, R. and Gordon, J.I., 2014. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159: 253-266. https://doi.org/10.1016/j.cell.2014.09.008
Seo, M.-D., Won, H.-S., Kim, J.-H., Mishig-Ochir, T. and Lee, B.J., 2012. Antimicrobial peptides for therapeutic applications: a review. Molecules 17: 12276-12286. https://doi.org/10.3390/ molecules171012276
Sobotta, J. and Welsch, U., 2000. Atlas d’histologie. Lavoisier. ed, Tech & Doc, Paris, France.
Spencer, J.D., Schwaderer, A.L., Becknell, B., Watson, J. and Hains, D.S., 2014. The innate immune response during urinary tract infection and pyelonephritis. Pediatric Nephrology 29: 1139-1149. https://doi.org/10.1007/s00467-013-2513-9
Sweeney, T.E. and Morton, J.M., 2013. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surgery 148: 563-569. https://doi.org/10.1001/jamasurg.2013.5
Turner, N.A., Sharma-Kuinkel, B.K., Maskarinec, S.A., Eichenberger, E.M., Shah, P.P., Carugati, M., Holland, T.L. and Fowler, V.G., 2019. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology 17: 203-218. https://doi.org/10.1038/s41579-018-0147-4
Vieco-Saiz, N., Belguesmia, Y., Raspoet, R., Auclair, E., Gancel, F., Kempf, I. and Drider, D., 2019. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology 10: 57. https://doi.org/10.3389/fmicb.2019.00057
Waite, D.W., Vanwonterghem, I., Rinke, C., Parks, D.H., Zhang, Y., Takai, K., Sievert, S.M., Simon, J., Campbell, B.J., Hanson, T.E., Woyke, T., Klotz, M.G. and Hugenholtz, P., 2017. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Frontiers in Microbiology 8: 682. https://doi.org/10.3389/fmicb.2017.00682