Interest of a Joint Use of Two Diagnostic Tools of Burnout: Comparison between the Oldenburg Burnout Inventory and the Early Detection Tool of Burnout Completed by Physicians
Interest of a Joint Use of Two Diagnostic Tools of Burnout Comparison between the Oldenburg Burnout Inventory and the Early Detection Tool of Burnout Completed by Physicians.pdf
[en] Most research on burnout is based on self-reported questionnaires. Nevertheless, as far as the clinical judgement is concerned, a lack of consensus about burnout diagnosis constitutes a risk of misdiagnosis. Hence, this study aims to assess the added value of a joint use of two tools and compare their diagnostic accuracy: (1) the early detection tool of burnout, a structured interview guide, and (2) the Oldenburg burnout inventory, a self-reported questionnaire. The interview guide was tested in 2019 by general practitioners and occupational physicians among 123 Belgian patients, who also completed the self-reported questionnaire. A receiver operating characteristic curve analysis allowed the identification of a cut-off score for the self-reported questionnaire. Diagnostic accuracy was then contrasted by a McNemar chi-squared test. The interview guide has a significantly higher sensitivity (0.76) than the self-reported questionnaire (0.70), even by comparing the self-reported questionnaires with the interviews of general practitioners and occupational physicians separately. However, both tools have a similar specificity (respectively, 0.60–0.67), except for the occupational physicians’ interviews, where the specificity (0.68) was significantly lower than the self-reported questionnaire (0.70). In conclusion, the early detection tool of burnout is more sensitive than the Oldenburg burnout inventory, but seems less specific. However, by crossing diagnoses reported by patients and by physicians, they both seem useful to support burnout diagnosis.
Disciplines :
Social, industrial & organizational psychology
Author, co-author :
Leclercq, Céline ; Université de Liège - ULiège > Département de Psychologie > Valorisation des ressources humaines
Babic, Audrey ; Université de Liège - ULiège > Département de Psychologie > Psychologie des groupes et des organisations
Hansez, Isabelle ; Université de Liège - ULiège > Département de Psychologie > Valorisation des ressources humaines
Language :
English
Title :
Interest of a Joint Use of Two Diagnostic Tools of Burnout: Comparison between the Oldenburg Burnout Inventory and the Early Detection Tool of Burnout Completed by Physicians
Publication date :
2021
Journal title :
International Journal of Environmental Research and Public Health
ISSN :
1660-4601
eISSN :
1661-7827
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland
Special issue title :
Special Issue "Occupational Stress and Health: Psychological Burden and Burnout"
FPS Employment, Labour and Social Dialogue. Maladies Professionnelles. Available online: https://www.bes-wic.be/fr/themes/information-pour-les-medecins-traitants/maladies-professionnelles (accessed on 20 September 2021).
National Institute for Health and Disability Insurance. Incapacité de Travail de Longue Durée: Combien de Burnouts et de Dépressions de Longue Durée? Quel Coût Pour L’assurance Indemnités? Available online: https://www.riziv.fgov.be/fr/statis-tiques/indemnites/Pages/incapacite-travail-longue-duree-combien-burn-outs-depressions.aspx#Une_augmenta-tion_de_39,23_%_de_burnouts_et_de_d%C3%A9pression de_longue_dur%C3%A9e_en_4_ans (accessed on: 20 July 2021).
Heureux, P. Le burnout à la consultation du médecin généraliste. Rev. Sect. Sci. St. De L’ucl 2018, 137, 535–539.
Guseva Canu, I.; Mesot, O.; Györkös, C.; Mediouni, Z. Burnout Syndrome in Europe: Towards a Harmonized Approach in Occupational Health Practice and Research. Ind. Health 2019, 57, 745–752.
World Health Organization. Burn-Out An “Occupational Phenomenon”: International Classification of Diseases. Available online: https://www.who.int/news/item/28-05-2019-burn-out-an-occupational-phenomenon-international-classification-of-dis-eases (accessed on: 27 July 2021).
Bravo, D.M.; Suárez-Falcón, J.C.; Bianchi, J.M.; Segura-Vargas, M.A.; Ruiz, F.J. Psychometric Properties and Measurement In-variance of the Maslach Burnout Inventory–General Survey in Colombia. Int. J. Environ. Res. Public Health 2021, 18, 5118.
Schaufeli, W.B.; Desart, S.; De Witte, H. Burnout Assessment Tool (BAT)—development, validity, and reliability. Int. J. Environ. Res. Public Health 2020, 17, 9495.
Guseva Canu, I.; Marca, S.; Dell’Oro, F.; Balázs, Á.; Bergamaschi, E.; Besse, C.; Bianchi, R.; Bislimovska, J.; Koscec Bjelajac, A.; Bugge, M.; et al. Harmonized Definition of Occupational Burnout: A Systematic Review, Semantic Analysis, And Delphi Consensus In 29 Countries. Scand. J. Work. Environ. Health 2020, 47, 95–107. doi:10.5271/sjweh.3935.
Hansez, I.; Firket, P.; Leclercq, C. Stades du burnout et le type de prévention approprié selon le stade. Presented at the “Burnout: Les Clefs Pour Agir”, Bruxelles, Belgium, 12 December 2019. Available online: https://www.health.belgium.be/fr/stades-du-burnout-et-le-type-de-prevention-approprie-selon-le-stade (accessed on: 17 September 2020).
Demerouti, E.; Bakker, A.B.; Vardakou, I.; Kantas, A. The convergent validity of two burnout instruments: A multitrait-multi-method analysis. Eur. J. Psychol. Assess. 2003, 19, 12, doi:10.1027//1015-5759.19.1.12.
Guidetti, G.; Viotti, S.; Gil-Monte, P.; Converso, D. Feeling Guilty or Not Guilty. Identifying Burnout Profiles Among Italian Teachers. Curr. Psychol. 2018, 37, 769–780, doi:10.1007/s12144-016-9556-6.
Shoman, Y.; Marca, S.C.; Bianchi, R.; Godderis, L.; van der Molen, H.F.; Guseva-Canu, I. Psychometric properties of burnout measures: A systematic review. Epidemiol. Psychiatr. Sci. 2021, 30, e8.
Abeltina, M.; Stokenberga, I.; Skudra, J.; Rascevska, M.; Kolesovs, A. Burnout Clinical Subtypes Questionnaire (BCSQ-36): Reliability and validity study in Latvia. Psychol. Health Med. 2020, 25, 1–12.
Schilling, R.; Colledge, F.; Brand, S.; Ludyga, S.; Gerber, M. Psychometric properties and convergent validity of the Shirom– Melamed burnout measure in two German-speaking samples of adult workers and police officers. Front. Psychiatry 2019, 10, 536.
Schaufeli, W.B.; De Witte, H.; Desart, S. Handleiding Burnout Assessment BPSEWS Tool (BAT); KU Leuven: Leuven, Belgium, 2020. Available online: https://burnoutassessmenttool.be/wp-content/uploads/2020/08/Handleiding-BAT-versie-2.0.pdf (ac-cessed on 19 November 2020).
Schaufeli, W.B.; De Witte, H.; Desart, S. Manual of Burnout Assessment Tool (BAT); KU Leuven: Leuven, Belgium, 2019.
Sakakibara, K.; Shimazu, A.; Toyama, H.; Schaufeli, W.B. Validation of the Japanese Version of the Burnout Assessment Tool. Front. Psychol. 2020, 11, 1819.
Consiglio, C.; Mazzetti, G.; Schaufeli, W.B. Psychometric Properties of the Italian Version of the Burnout Assessment Tool (BAT). Int. J. Environ. Res. Public Health 2021, 18, 9469.
Schaufeli, W.B.; van Dierendonk, D. Utrechtse Burnout Schaal (UBOS) Handleiding (Utrecht Burnout Scale Manual); Swets & Zeitlinger: Utrecht, Netherlands, 2000.
Rotenstein, L.; Torre, M.; Ramos, M.; Rosales, R.; Guille, C.; Sen, S.; Mata, D. Prevalence of Burnout Among Physicians. J. Am. Med Assoc. 2018, 320, 1131, doi:10.1001/jama.2018.12777.
Qiao, H.; Schaufeli, W. The Convergent Validity of Four Burnout Measures in A Chinese Sample: A Confirmatory Factor-Ana-lytic Approach. Appl. Psychol. 2010, 60, 87–111, doi:10.1111/j.1464-0597.2010.00428.x.
Sinval, J.; Queirós, C.; Pasian, S.; Marôco, J. Transcultural Adaptation of the Oldenburg Burnout Inventory (OLBI) for Brazil and Portugal. Front. Psychol. 2019, 10, 338, doi: 10.3389/fpsyg.2019.00338.
Grove, W.; Zald, D.; Lebow, B.; Snitz, B.; Nelson, C. Clinical Versus Mechanical Prediction: A Meta-Analysis. Psychol. Assess. 2000, 12, 19–30, doi:10.1037/1040-3590.12.1.19.
Bell, I.; Mellor, D. Clinical Judgements: Research and Practice. Aust. Psychol. 2009, 44, 112–121, doi:10.1080/00050060802550023.
Hansez, I.; Mairiaux, P.; Firket, P.; Braeckman, L. Recherche Sur le Burnout au Sein de La Population Active Belge: Rapport Final [Research on Burnout in the Active Belgian Population: Final Report]; FPS Employment, Labour and Social Dialogue: Bruxelles, Belgium, 2010. Available online https://emploi.belgique.be/sites/default/files/content/documents/Bien-%C3%AA-tre%20au%20travail/Projets%20de%20recherche/rapport_final_burnout.pdf (accessed on 12 November 2020).
Hansez, I.; Rusu, D.; Firket, P.; Braeckman, L. Evolution 2010–2018 du Burnout en Belgique et Intérêt de L'utilisation Conjointe de Deux Outils de Diagnostic; FPS Employment, Labour and Social Dialogue: Bruxelles, Belgium, 2019. Available online: https://em-ploi.belgique.be/sites/default/files/content/documents/Bien-%C3%AAtre%20au%20travail/Projets%20de%20recherche/burn-out2019_samenvatting_van_het_onderzoek_FR.pdf (accessed on 12 November 2020).
FPS Employment, Labour and Social Dialogue. Détection Précoce du Burnout: Outil Pour le Médecin Généraliste Burnout. Available online: https://emploi.belgique.be/fr/publications/detection-precoce-du-burnout-outil-pour-le-medecin-generaliste (accessed on: 13 November 2020).
Nahavandi, K.H. Calculating Sensitivity, Specificity and Predictive Values for Medical Diagnostic Tests. Gene Cell Tissue 2018, 5, e80270, doi:10.5812/gct.80270.
Hajian-Tilaki, K. The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Stat. Methods Med. Res. 2018, 27, 2374–2383.
Trevethan, R. Sensitivity, Specificity, And Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front. Public Health 2017, 5, 307–313, doi:10.3389/fpubh.2017.00307.
Ægisdóttir, S.; White, M.; Spengler, P.; Maugherman, A.; Anderson, L.; Cook, R.; Nichols, C.; Lampropoulos, G.; Walker, B.; Cohen, G.; et al. The Meta-Analysis of Clinical Judgment Project: Fifty-Six Years of Accumulated Research on Clinical Versus Statistical Prediction. Couns. Psychol. 2006, 34, 341–382. doi:10.1177/0011000005285875.
van Vugt, E.; Asscher, J.; Hendriks, J.; Stams, G.; Bijleveld, C.; van der Laan, P. Assessment of Moral Judgment and Empathy in Young Sex Offenders. Int. J. Offender Ther. Comp. Criminol. 2011, 56, 986–996, doi:10.1177/0306624x11420083.
Kirkhus, L.; Šaltytė Benth, J.; Rostoft, S.; Grønberg, B.; Hjermstad, M.; Selbæk, G.; Wyller, T.; Harneshaug, M.; Jordhøy, M. Geriatric Assessment Is Superior to Oncologists’ Clinical Judgement in Identifying Frailty. Br. J. Cancer 2017, 117, 470–477. doi:10.1038/bjc.2017.202.
Barroso, N.; Alcântara, P.; Botelho, A.; Douglas-de-Oliveira, D.; Gonçalves, P.; Flecha, O. Prevalence of Self-Reported Versus Diagnosed Dentinal Hypersensitivity: A Cross-Sectional Study and ROC Curve Analysis. Acta Odontol. Scand. 2019, 77, 219– 223, doi:10.1080/00016357.2018.1536804.
Schaufeli, W.B.; Bakker, A.B.; Hoogduin, K.; Schaap, C.; Kladler, A. On the clinical validity of the Maslach Burnout Inventory and the Burnout Measure. Psychol. Health 2001, 16, 565–582, doi:10.1080/08870440108405527.
Kleijweg, J.; Verbraak, M.; Van Dijk, M. The Clinical Utility of The Maslach Burnout Inventory in A Clinical Population. Psychol. Assess. 2013, 25, 435–441, doi:10.1037/a0031334.
Wickramasinghe, N.; Dissanayake, D.; Abeywardena, G. Clinical Validity and Diagnostic Accuracy Of The Maslach Burnout Inventory-Student Survey In Sri Lanka. Health Qual. Life Outcomes 2018, 16, 220, doi:10.1186/s12955-018-1048-y.
Evans, S.; Reed, G.; Roberts, M.; Esparza, P.; Watts, A.; Correia, J.; Ritchie, P.; Maj, M.; Saxena, S. Psychologists' Perspectives on The Diagnostic Classification of Mental Disorders: Results from the WHO-Iupsys Global Survey. Int. J. Psychol. 2013, 48, 177– 193, doi:10.1080/00207594.2013.804189.
Bakker, A.B.; Demerouti, E. Job demands–resources theory: Taking stock and looking forward. J. Occup. Health Psy-Chology 2017, 22, 273, doi:10.1037/ocp0000056.
Hansez, I.; Laurent, J. Création de Normes Pour la Version Francophone de L’outil « OLBI ». Unpublished work, 2018.
R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. Available online: http://www.R-project.org (accessed on 14 September 2021).
Yang, S.; Berdine, G. The receiver operating characteristic (ROC) curve. Southwest Respir. Crit. Care Chron. 2017, 5, 34–36.
Landis, J.R.; Koch, G.G. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977, 33, 363–374, doi:10.2307/2529786.
Power, M.; Fell, G.; Wright, M. Principles for High-Quality, High-Value Testing. Evid. Based Med. 2012, 18, 5–10, doi:10.1136/eb-2012-100645.
Mbanga, C.; Makebe, H.; Tim, D.; Fonkou, S.; Toukam, L.; Njim, T. Determinants of burnout syndrome among nurses in Cam-eroon. BMC Res. Notes 2018, 11, 893.
Nguyen Huynh, A.; Besse, C.; Mediouni, Z.; El May, E.; Shoman, Y.; Hansez, I.; Guseva Canu, I. Diagnostic Performances of an Occupational Burnout Detection Method Designed for Healthcare Professionals; Submitted for Publication (ijerph-1428819); Int. J. Environ. Res. Public Health, 2021 (under review).
Nguyen Huynh, A.; Béguelin, A.; Krief, P.; Marion-Veyron, R.; Mediouni, Z.; Regamey, F.; Staeger, P.; Guseva Canu, I. Repérage et prise en charge des patients en burnout par les médecins d’Unisanté [Detection and treatment of burnout by physicians of Unisanté]. Rev. Med. Suisse 2021, 17, 221–224.
Salvagioni, D.; Melanda, F.; Mesas, A.; González, A.; Gabani, F.; Andrade, S. Physical, Psychological and Occupational Consequences Of Job Burnout: A Systematic Review Of Prospective Studies. PLoS ONE 2017, 12, e0185781, doi:10.1371/jour-nal.pone.0185781.
Fedris. Projet Pilote Burn-Out. Available online: https://fedris.be/fr/node/2540 (accessed on 27 November 2020).
García-Arroyo, J.; Osca Segovia, A. Effect sizes and cut-off points: A meta-analytical review of burnout in Latin American coun-tries. Psychol. Health Med. 2018, 23, 1079–1093.