instrumentation: high angular resolution; adaptive optics; methods: numerical; Astrophysics - Instrumentation and Methods for Astrophysics; Physics - Optics
Abstract :
[en] Focal plane wavefront sensing (FPWFS) is appealing for several reasons. Notably, it offers high sensitivity and does not suffer from non-common path aberrations (NCPAs). The price to pay is a high computational burden and the need for diversity to lift any phase ambiguity. If those limitations can be overcome, FPWFS is a great solution for NCPA measurement, a key limitation for high-contrast imaging, and could be used as adaptive optics wavefront sensor. Here, we propose to use deep convolutional neural networks (CNNs) to measure NCPAs based on focal plane images. Two CNN architectures are considered: ResNet-50 and U-Net that are used, respectively, to estimate Zernike coefficients or directly the phase. The models are trained on labelled data sets and evaluated at various flux levels and for two spatial frequency contents (20 and 100 Zernike modes). In these idealized simulations, we demonstrate that the CNN-based models reach the photon noise limit in a large range of conditions. We show, for example, that the root mean squared wavefront error can be reduced to <λ/1500 for 2 × 106 photons in one iteration when estimating 20 Zernike modes. We also show that CNN-based models are sufficiently robust to varying signal-to-noise ratio, under the presence of higher order aberrations, and under different amplitudes of aberrations. Additionally, they display similar to superior performance compared to iterative phase retrieval algorithms. CNNs therefore represent a compelling way to implement FPWFS, which can leverage the high sensitivity of FPWFS over a broad range of conditions.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Orban De Xivry, Gilles ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > PSILab
Quesnel, Maxime ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Vanberg, P.-O.
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > PSILab
Louppe, Gilles ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Language :
English
Title :
Focal plane wavefront sensing using machine learning: performance of convolutional neural networks compared to fundamental limits
Allan G., Kang I., Douglas E. S., Barbastathis G., Cahoy K., 2020a, Opt. Express, 28, 26267
Allan G., Kang I., Douglas E. S., N’Diaye M., Barbastathis G., Cahoy K., 2020b, in Lystrup M., Perrin M. D., Batalha N., Siegler N., Tong E. C., eds, Proc. SPIE Conf. Ser. Vol. 11443, Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave. SPIE, Bellingham, p. 1144349
Andersen T., Owner-Petersen M., Enmark A., 2019, Opt. Lett., 44, 4618
Andersen T., Owner-Petersen M., Enmark A., 2020, J. Astron. Telesc. Instrum. Syst., 6, 034002
Angel J. R. P., Wizinowich P., Lloyd-Hart M., Sandler D., 1990, Nature, 348, 221
Astropy Collaboration, 2013, A&A, 558, A33
Barrett T. K., Sandler D. G., 1993, Appl. Opt., 32, 1720
Bos S. P. et al., 2019, A&A, 632, A48
Chambouleyron V. et al., 2021, A&A, 650, L8
Cheng Y., Wang D., Zhou P., Zhang T., 2020, preprint (arXiv:1710.09282)
Cumming B. P., Gu M., 2020, Opt. Express, 28, 14511
Delavaquerie E., Cassaing F., Amans J. P., 2010, in Clénet Y., Conan J.M., Fusco Th., Rousset G., eds, 1st AO4ELT conference - Adaptative Optics for Extremely Large Telescopes. EDP Sciences, Les Ulis, France, p. 05018
Dohlen K., Wildi F. P., Puget P., Mouillet D., Beuzit J.-L., 2011, 2nd AO4ELT conference - Adaptive Optics for Extremely Large Telescopes. Victoria, Canada, p. 75
Fauvarque O. et al., 2019, 6th AO4ELT conference - Adaptive Optics for Extremely Large Telescopes, Québec, Canada
Fienup J. R., 1982, Appl. Opt., 21, 2758
Foley J. T., Butts R. R., 1981, J. Opt. Soc. Am., 71, 1008
Gerchberg R. W., Saxton W. O., 1972, Optik, 35, 237
Gonsalves R. A., 1982, Opt. Eng., 21, 829
Guo H., Xu Y., Li Q., Du S., He D., Wang Q., Huang Y., 2019, Sensors, 19, 3533
Guyon O., 2005, ApJ, 629, 592
Guyon O., 2010, PASP, 122, 49
Harris C. R. et al., 2020, Nature, 585, 357
He K., Zhang X., Ren S., Sun J., 2016, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Las Vegas, NV, USA, p. 770
Hunter J. D., 2007, Comput. Sci. Eng., 9, 90
Jorgenson M. B., Aitken G. J. M., 1992, Opt. Lett., 17, 466
Jovanovic N. et al., 2018, in Close L. M., Schreiber L., Schmidt D., eds, Proc. SPIE Conf. Ser. Vol. 10703, Adaptive Optics Systems VI. SPIE, Bellingham, p. 107031U
Keller C. U., Korkiakoski V., Doelman N., Fraanje R., Andrei R., Verhaegen M., 2012, in Ellerbroek B. L., Marchetti E., Véran J.-P., eds, Proc. SPIE Conf. Ser. Vol. 8447, Adaptive Optics Systems III. SPIE, Bellingham, p. 844721
Kingma P. D., Ba L. J., 2015, The 3rd International Conference on Learning Representations
Korkiakoski V., Keller C. U., Doelman N., Fraanje R., Andrei R., Verhaegen M., 2012, in Ellerbroek B. L., Marchetti E., Véran J.-P., eds, Proc. SPIE Conf. Ser. Vol. 8447, Adaptive Optics Systems III. SPIE, Bellingham, p. 84475Z
Krishnan A. P., Belthangady C., Nyby C., Lange M., Yang B., Royer L. A., 2020, bioRxiv
Krist J. E., 2007, in Kahan M. A., ed., Proc. SPIE Conf. Ser. Vol. 6675, Optical Modeling and Performance Predictions III. SPIE, Bellingham, p. 66750P
Krizhevsky A., Sutskever I., Hinton G. E., 2017, Commun. ACM, 60, 84
Landman R., Haffert S. Y., 2020, Opt. Express, 28, 16644
LeCun Y., Boser B., Denker J., Henderson D., Howard R., Hubbard W., Jackel L., 1990, in Touretzky D., ed., Advances in Neural Information Processing Systems. vol. 2. Morgan-Kaufmann, Burlington, Massachusetts, p. 396
Lee D. J., Roggemann M. C., Welsh B. M., 1999, J. Opt. Soc. Am. A, 16, 1005
Liu X., Morris T., Saunter C., de Cos Juez F. J., González-Gutiérrez C., Bardou L., 2020, MNRAS, 496, 456
McGuire P. C., Sandler D. G., Lloyd-Hart M., Rhoadarmer T. A., 1999, Adaptive Optics: Neural Network Wavefront Sensing, Reconstruction, and Prediction, Springer Berlin Heidelberg, p. 97
Meynadier L., Michau V., Velluet M.-T., Conan J.-M., Mugnier L. M., Rousset G., 1999, Appl. Opt., 38, 4967
Milster T. D., 2020, in Blanche P.-A., ed., Optical Holography. Elsevier, Amsterdam, The Netherlands, p. 61
Montera D. A., Welsh B. M., Ruck D. W., Roggemann M. C., 1996, Appl. Opt., 35, 4238
N’Diaye M., Dohlen K., Fusco T., Paul B., 2013, A&A, 555, A94
Naik K. R., Wright R. H., Claveau D. D., Acton D. S., Knight J. S., 2020, in Schreiber L. Schmidt D. Vernet E., eds, Proc. SPIE Conf. Ser. Vol. 11448, Adaptive Optics Systems VII. SPIE, Bellingham, p. 114481H
Nishizaki Y., Valdivia M., Horisaki R., Kitaguchi K., Saito M., Tanida J., Vera E., 2019, Opt. Express, 27, 240
Noethe L., Adorf H. M., 2007, J. Mod. Opt., 54, 3
Osborn J. et al., 2014, MNRAS, 441, 2508
Paine S. W., Fienup J. R., 2018, Opt. Lett., 43, 1235
Paszke A. et al., 2019, in Wallach H., Larochelle H., Beygelzimer A., d’Alché-Buc F., Fox E., Garnett R., eds, Advances in Neural Information Processing Systems 32 (NeurIPS 2019). Curran Associates, Inc.
Paterson C., 2008, J. Phys.: Conf. Ser., 139, 012021
Paterson C., 2013, Imaging and Applied Optics. Optical Society of America, p. OM2A.1
Paul B., Mugnier L. M., Sauvage J. F., Ferrari M., Dohlen K., 2013, Opt. Express, 21, 31751
Paxman R. G., Schulz T. J., Fienup J. R., 1992, J. Opt. Soc. Am. A, 9, 1072
Plantet C., Meimon S., Conan J. M., Fusco T., 2015, Opt. Express, 23, 28619
Quesnel M., Orban de Xivry G., Louppe G., Absil O., 2020, in Schreiber L., Schmidt D., Vernet E., eds, Proc. SPIE Conf. Ser. Vol. 11448, Adaptive Optics Systems VII. SPIE, Bellingham, p. 114481G
Ronneberger O., Fischer P., Brox T., 2015, in Navab N., Hornegger J., Wells W. M., Frangi A. F., eds, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, Cham, p. 234
Sandler D. G., Barrett T. K., Palmer D. A., Fugate R. Q., Wild W. J., 1991, Nature, 351, 300
Schulz T. J., Sun W., Roggemann M. C., 1999, in Roggemann M. C., Bissonnette L. R., eds, Proc. SPIE Conf. Ser. Vol. 3763, Propagation and Imaging through the Atmosphere III. SPIE, Bellingham, p. 23
Swanson R., Lamb M., Correia C., Sivanand am S., Kutulakos K., 2018, in Close L. M., Schreiber L., Schmidt D., eds, Proc. SPIE Conf. Ser. Vol. 10703, Adaptive Optics Systems VI. SPIE, Bellingham, p. 107031F
Swanson R., Lamb M., Correia C. M., Sivanandam S., Kutulakos K., 2021, MNRAS, 503, 2944
Townson M. J., Farley O. J. D., Orban de Xivry G., Osborn J., Reeves A. P., 2019, Opt. Express, 27, 31316
Vanberg P.-O., Orban de Xivry G., Absil O., Louppe G., 2019, Machine Learning and the Physical Sciences. Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS). Vancouver, Canada, p. 107
Vievard S. et al., 2019, 6th AO4ELT conference - Adaptive Optics for Extremely Large Telescopes. Québec, Canada
Wang Y., Xu C., Qiu J., Xu C., Tao D., 2018, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD’18. Association for Computing Machinery, New York, NY, USA, p. 2476
Wang K., Li Y., Kemao Q., Di J., Zhao J., 2019, Opt. Express, 27, 15100