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ABSTRACT
Focal plane wavefront sensing (FPWFS) is appealing for several reasons. Notably, it offers high sensitivity and does not suffer
from non-common path aberrations (NCPAs). The price to pay is a high computational burden and the need for diversity to lift
any phase ambiguity. If those limitations can be overcome, FPWFS is a great solution for NCPA measurement, a key limitation
for high-contrast imaging, and could be used as adaptive optics wavefront sensor. Here, we propose to use deep convolutional
neural networks (CNNs) to measure NCPAs based on focal plane images. Two CNN architectures are considered: ResNet-50 and
U-Net that are used, respectively, to estimate Zernike coefficients or directly the phase. The models are trained on labelled data
sets and evaluated at various flux levels and for two spatial frequency contents (20 and 100 Zernike modes). In these idealized
simulations, we demonstrate that the CNN-based models reach the photon noise limit in a large range of conditions. We show,
for example, that the root mean squared wavefront error can be reduced to <λ/1500 for 2 × 106 photons in one iteration when
estimating 20 Zernike modes. We also show that CNN-based models are sufficiently robust to varying signal-to-noise ratio, under
the presence of higher order aberrations, and under different amplitudes of aberrations. Additionally, they display similar to
superior performance compared to iterative phase retrieval algorithms. CNNs therefore represent a compelling way to implement
FPWFS, which can leverage the high sensitivity of FPWFS over a broad range of conditions.

Key words: instrumentation: high angular resolution, adaptive optics – methods: numerical.

1 IN T RO D U C T I O N

High-contrast imaging instruments are now routinely used in ground-
based astronomy to explore circumstellar environments and to detect
exoplanets. To achieve such a feat, they must reach high contrast
at small angular separation and thus rely on a precise control of
the wavefront. Extreme adaptive optics (AO) systems correct the
corrugated wavefront caused by atmospheric turbulence and provide
near-perfect diffraction limited point spread functions (PSFs), which
can then be effectively suppressed by a coronagraph. However, the
contrast, or likewise the exoplanet detectability, may still be limited
by non-common path aberrations (NCPAs) between the wavefront
sensor arm and the scientific path. These NCPAs are quasi-static
with minute to hour time-scales due to slowly evolving instrumental
aberrations and beam wander related to temperature, humidity, and
mechanical changes. Because of their nature, they appear essentially
at low spatial frequencies. These properties make them challenging
to remove in post-processing and detrimental to the final contrast.
In this respect, focal plane wavefront sensing (FPWFS) with the
scientific detector is an appealing solution. In addition to getting rid
of NCPAs and chromatic errors, FPWFS offers high sensitivity that
is only surpassed by the Zernike wavefront sensor (ZWFS; Guyon
2005). It is also simple opto-mechanically and necessitates few to
no modifications of the optics. This low complexity means less risk
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of failure and less maintenance. An overview of existing FPWFS
techniques for high-contrast imaging instruments can be found in
Jovanovic et al. (2018) but the interest for FPWFS goes well beyond
NPCA measurement. Some aberrations are not well measured by
pupil WFS such as phase discontinuities caused by the presence
of spiders (so-called petalling and low wind effect; e.g. Vievard
et al. 2019). Other applications range from co-phasing segmented
mirrors (e.g. Delavaquerie, Cassaing & Amans 2010) to real-time AO
systems (e.g. Keller et al. 2012; Korkiakoski et al. 2012). However,
the price to pay of FPWFS is typically a high computational burden,
as the problem is non-linear, and it generally requires a source of
diversity to effectively lift any phase ambiguity.

In parallel, machine learning algorithms have been developed and
applied to phase retrieval and wavefront sensing, in many different
fields including astronomy. Neural networks were first used for real-
time atmospheric compensation and co-phasing (Angel et al. 1990;
Sandler et al. 1991), and retrieval of static aberration in the Hubble
Space Telescope (Barrett & Sandler 1993). These techniques have
then been used more broadly in the field of AO, to reduce Shack–
Hartmann WFS slope errors (Montera et al. 1996), to perform open-
loop AO tomographic reconstruction (Osborn et al. 2014), or to
predict wavefront and reduce temporal errors (e.g. Jorgenson &
Aitken 1992; McGuire et al. 1999; Liu et al. 2020). The non-
linear nature of neural networks makes them good candidates to
solve the non-linear phase retrieval problem. Despite these early
results, the lack of generalization power and the poor scaling of the
networks ultimately limited the achievable performance. Later on,
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convolutional neural networks (CNNs) were introduced (LeCun et al.
1990; Krizhevsky, Sutskever & Hinton 2017). Specifically designed
for images, CNNs use successive convolution operations, learning
from group of pixels and assembling progressively more complex
patterns. More recent works have applied such CNNs to non-linear
wavefront reconstruction (Swanson et al. 2018; Landman & Haffert
2020), wavefront prediction (Swanson et al. 2018, 2021), to extend
the usable range of Lyot-based low-order wavefront sensors (Allan
et al. 2020a) and of Zernike phase-contrast wavefront sensors (Allan
et al. 2020b), and to FPWFS (e.g. Paine & Fienup 2018; Andersen,
Owner-Petersen & Enmark 2020).

Deep learning techniques are in fact burgeoning in all optical ap-
plications using phase retrieval, ranging from biomedical microscopy
(e.g. Cumming & Gu 2020; Krishnan et al. 2020) to holography (e.g.
Peng et al. 2020) and astronomy. The specific application to image-
based wavefront sensing has been investigated in several recent works
that we attempt to summarize in the following. Naik et al. (2020) used
a compact CNN for object-agnostic wavefront sensing, inferring up to
six Zernike coefficients, but reported a poorly sensed coma. Wu et al.
(2020) trained a CNN for fast inference of 13 Zernike coefficients and
obtained mild improvements for input aberrations of around 2 rad
root mean square (rms). Nishizaki et al. (2019) proposed to extend
the design space of wavefront sensor using deep learning where the
inputs are preconditioned images such as overexposed, defocused, or
scattered images. Guo et al. (2019) used a direct phase-map-output
CNN model for the inference of up to 64th Zernike mode with input
wavefront error (WFE) from about 1.5 up to 4.5 rad rms. They
obtained residual errors in the range of approximately 0.45–0.82 rad
and validated their approach experimentally. Paine & Fienup (2018)
used the Inception v3 architecture to expand the capture range of
gradient-based optimization methods. They applied their approach
to the JWST aperture and consider up to 18 Zernike coefficients with
input WFE in the range of 1.57–25.1 rad rms. The residual WFE
after the CNN is on average 2.3 rad rms. The trained CNN provides
here good initial estimates to a second stage gradient-based method.
Andersen, Owner-Petersen & Enmark (2019) and Andersen et al.
(2020) studied the potential of real-time image sharpening using
ResNet and Inception v3 models to estimate Zernike coefficients
from pairs of in-focus and out-of-focus images that are blurred
by the atmospheric turbulence. They included the effect of noise,
guide star magnitude, polychromaticity, and bit depth. They explored
an aberration regime of about 8–13 rad rms (D/r0 = 12 and 21,
respectively, where D is the telescope diameter and r0 is the Fried
parameter) and obtained a residual error of about 1.4 and 2 rad rms,
respectively, by correcting for 36 Zernike modes. When increasing
the number to 66 modes, they obtained only a marginal improvement.

While those studies demonstrated the validity of the approach,
i.e. using a CNN-based framework for FPWFS, it is unclear what
really limits the performance reported, or if CNNs can leverage fully
the sensitivity of FPWFS and if they can be applied effectively in a
lower aberration regime relevant to NCPA measurements. We first
investigated this lower aberration regime in a short report (Vanberg
et al. 2019) demonstrating its working principle. We then explored
in Quesnel et al. (2020) different numerical aspects and applied our
framework to vortex coronagraphic imaging.

In this paper, our focus is to better understand the limitations
of such a CNN-based framework for FPWFS in the context of
NCPA measurements. More specifically, we study a regime of up
to 1 rad rms input WFE and up to 100 Zernike modes. We also
deliberately limit the number of simulated effects, such as e.g. noise
sources or higher order disturbances, to systematically explore the
achievable performance of CNNs for FPWFS and compare it to

Figure 1. Spatial PSD of the generated phase maps reproducing high-quality
optical surfaces.

the fundamental limit for wavefront sensing. First, in Section 2,
we describe our simulation set-up, i.e. the data simulator and the
CNN architectures used for this work. In Section 3, we analyse our
CNN models under idealized and degraded conditions and compare
them with the expected photon noise limit. We also consider the
implication of the sign ambiguity and the pixel sampling. Finally,
in Section 4 we compare the CNN model to iterative phase retrieval
and discuss numerical considerations. Overall, we demonstrate that
CNN-based algorithms can efficiently solve the inverse problem
posed by FPWFS. In particular, our framework is shown to be
readily applicable for the measurement of NCPA, and we discuss
throughout the paper different considerations for laboratory and on-
sky applications, and for a broader usage such as, e.g. AO.

2 METHODS A ND SI MULATI ON SET-UP

2.1 Focal plane imaging and data set generation

One of the keys to the success of deep learning is the availability
of a large and representative labelled data set. In this paper, the
data consists of a set of numerically simulated, aberrated PSF pairs:
in-focus and out-of-focus. The introduction of this phase diversity
ensures the uniqueness (Foley & Butts 1981; Gonsalves 1982;
Paxman, Schulz & Fienup 1992) of the solution while being easy to
implement in practice, either by introducing defocus on a deformable
mirror or by displacing the detector itself. The well-known sign
ambiguity in the absence of diversity is discussed in Section 3.6.

Since our work is primarily motivated by the measurement and
correction of NCPAs, we generate phase maps to reflect typical errors
of high-quality optical surfaces (e.g. Dohlen et al. 2011), with a
spatial power spectral density (PSD) profile S ≈ 1/f2, where f is the
spatial frequency. The PSD is illustrated in Fig. 1. This is achieved
by drawing random Zernike coefficients from a uniform distribution
between [−1, 1] and dividing each coefficient by its Zernike radial
order. The coefficients are then scaled to obtain the desired median
rms WFE, where the median is calculated over the data set. The rms
WFE distribution over one of our data sets is illustrated in Fig. 2. This
procedure leads to a uniform density distribution for each individual
Zernike mode, where the minimum and maximum depend on the
Zernike index and are a function of the desired median rms WFE and
the number of Zernike coefficients.

Finally, the phase maps ϕ(x, y) are obtained as a linear combination
of the Zernike polynomials weighted by the previously generated
coefficients. Each one of them is then propagated through the system
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Figure 2. Distribution of the rms WFE of one data set with a median of
350 nm.

to produce the corresponding PSFs, PSF(x, y),

PSF(x, y) ∝ |F [A(x, y) exp (iϕ(x, y))]|2, (1)

where A(x, y) is the pupil function. The pupil function considered here
is a simple uniformly illuminated circular pupil. The measurement,
i.e. the PSF, is finally affected by noise. Here, we limit ourselves
to photon noise, and disregard, for example, detector noises that are
technological in nature. Hence, the signal-to-noise ratio of our image
is SNR = √

Nph, where Nph is the total number of photons in the
image.

The image sizes are fixed to 128 × 128 pixels. The PSFs are
sampled by 4.5 pixels over 1λ/D and the corresponding field of view
is ∼28.5λ/D. Such PSF sampling can be obtained, for instance, for
a wavelength of 2.2 μm, a pixel scale of 0.01 arcsec per pixel, and a
telescope diameter of 10 m. These parameters are representative of
existing instruments such as, e.g. NIRC-2 at the Keck Observatory.
Before being saved, the focal plane images are formatted in half-
precision (float 16 bits). This step ensures that the theoretical sign
ambiguity is perfectly reproduced numerically, i.e. that the PSFs
generated from phase maps that only differ by the sign of their odd
Zernike modes are numerically identical.

In this work, we consider median rms WFE of 70 and 350 nm at
a wavelength of 2.2 μm, thus 0.2 and 1 rad rms, respectively. For
convenience, we will often refer to these two levels as ‘low’ and
‘high’ aberration regime. We also consider two different numbers of
Zernike modes, 20 and 100. We have thus four different scenarios for
our following analyses. The resulting PSFs are illustrated in Fig. 3.
The introduced phase diversity for the second PSF is a defocus term
set to λ/4, i.e. 550 nm rms. The motivation to limit our training data
to those four regimes is two-fold. First, the number of modes and
the aberration level represent what is typically considered for NCPA
correction on 8–40 m class telescopes. Second, increasing the number
of modes and the aberration level increases the dimensionality
of the problem. Thus, defining different data sets (with different
dimensionalities), rather than a single one containing all the studied
cases, allows to better understand the performance obtained, i.e.
fundamental limit for wavefront sensing versus limitations of the
CNN models (e.g. generalization power or suboptimal training).
Nevertheless, in Section 3.4, we consider other appropriate data sets:
one drawn from a uniform rms WFE distribution, and several with
higher level of aberrations.

Figure 3. Illustration of the simulated PSFs with a square root stretch
and 99 per cent interval. The signal-to-noise ratio equals 1000. Aberrations
distributed over 20 (left) and 100 (right) Zernike modes. ‘Low’ (top) and
‘high’ (bottom) aberration levels.

2.2 Network architectures and training

We consider two approaches to our problem: one where the CNN
is trained to estimate Zernike coefficients and one where the CNN
is trained to do a direct phase map estimation. During the onset
of this work, we considered a number of architectures with good
ranking at ImageNet classification challenges: VGG-16, Inception
v3, ResNet-50, U-Net, and U-Net++. Eventually, and in this paper,
we only use ResNet-50 and U-Net, the other architectures either did
not work well for our application or do not add further insights to the
topics discussed here. It is worth noting, however, that Inception v3
has shown promising results in different simulation studies (Paine &
Fienup 2018; Andersen et al. 2019).

Residual neural networks (He et al. 2016), or ResNet, are very
deep networks where skip connections are introduced to improve
gradient flow during the training steps. We use ResNet-50, which is
50 layers deep, and we initialize it with the parameters pre-trained
on ImageNet. In order to adapt the architectures to the prediction
of Zernike coefficients, the softmax activation and the last fully
connected layers were replaced to match the output requirements.

For the direct phase estimation approach, we focused on an
architecture initially developed for biomedical image segmentation:
U-Net (Ronneberger, Fischer & Brox 2015). The overall network
structure follows a U-shaped geometry. The encoding part is made
of successive 3 × 3 convolution layers followed by 2 × 2 max pooling
layers. The input PSF images are thus progressively downsampled
while the most relevant features are extracted. The contracting
part is followed by an expansion part replacing pooling operators
by upsampling operators. Importantly, there are skip connections
combining features from the contracting path with the upsampling
part. Since we perform regression rather than segmentation, the last
softmax layer was removed. In our implementation, the input PSF
images and the output phase maps have the same grid sizes.

For the optimization, we used Adam (Kingma & Ba 2015) with
an initial learning rate of 10−3 and a scheduler dividing the learning
rate by two every 75 epochs. Our typical training procedure consists
of a data set of 100 000 entries, each consisting of two focal plane
images and one phase map. Before being fed into the CNN, photon
noise is added to the images, a square root stretch is applied, and
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each image is normalized by its maximum. Our data set is typically
split in a 90:10 ratio, i.e. 90 000 entries are used for training and
10 000 for validation. We use a batch size of 64 entries, all batches
constitute one epoch, and we train for 200 epochs. The results and
analyses, as presented in Section 3, use different data sets based on
different random seeds for the Zernike coefficient generation. The
loss function corresponds to the rms error, i.e.

loss(ϕ, ϕ̂) =
√√√√ 1

N

N∑
i,j

(
ϕ(xi, yj ) − ϕ̂(xi, yj )

)2
, (2)

where N is the total number of pixels per phase map, ϕ̂ is the estimated
phase, and ϕ is the true phase map.

3 R ESULTS A N D ANALYSIS

In this section, we explore the performance of our CNN models under
idealized and degraded conditions. Both architectures, ResNet-50
and U-Net, give similar results. Therefore, we will only compare
them when appropriate and we will use them interchangeably
otherwise.

3.1 Fundamental limit for wavefront sensing

The wavefront estimation is fundamentally limited by the informa-
tion contained in the measurement process. The Fisher information
matrix and the Cramér–Rao (CR) bound are typically used to quan-
tify the information ultimately extractable from the measurement
whatever the estimation method. More specifically, the CR bound
gives the lower bound on the error variance, and its reciprocal is the
Fisher information for an unbiased estimator. Several studies rely on
this lower bound to get the fundamental limit of different wavefront
sensor’s performances (Lee, Roggemann & Welsh 1999; Schulz, Sun
& Roggemann 1999; Noethe & Adorf 2007; Paterson 2008, 2013;
Plantet et al. 2015).

Considering photon noise only, i.e. the ultimate noise limit
since it pertains to the nature of light, Paterson (2008) derives a
fundamental limit for wavefront sensing without any assumption on
the optics, if only that the wavefront sensor transforms the pupil
phase in a measureable intensity. He derives the CR bound and finds
that the measurement error of an aberration mode j must satisfy
σ 2

j ≥ 1/(4Nph). Interestingly, this limit can also be derived from the

uncertainty principle in the form �ϕ �Nph ≥ 1/2, or �ϕ ≥ 1/
√

4Nph

for Nph independent photon probes. However, the existence of this
bound does not guarantee that it is actually possible to reach it.
The most sensitive wavefront sensors, among existing concepts,
are the ZWFS (Guyon 2005; N’Diaye et al. 2013) and the iQuad
(Fauvarque et al. 2019). Both concepts rely on a π /2 phase shift
between different parts of the focal plane and differ in its tessellation.
Under photon noise only, the measurement error of the ZWFS1 is
σ 2

j = 1/(2Nph) for the aberration mode j (N’Diaye et al. 2013). The
loss of a factor two with respect to the fundamental limit is the
result of the diffraction by the phase mask distributing half of the
light outside the exit pupil. Since only the exit geometrical pupil is
used for the measurement, the signal is effectively half of the input.
Recently, however, a variation on the ZWFS with an enlarged central
dot has been proposed improving its sensitivity at the expense of
the lower spatial frequencies (Chambouleyron et al. 2021). In those

1For a phase error close to zero and phase shift of π /2 over the central 1.06λ/D
(N’Diaye et al. 2013).

conditions, the measurement error can almost reach the fundamental
limit of 1/4Nph.

Second after the ZWFS, FPWFS offers a high sensitivity with a
measurement error known to be ∝1/Nph (e.g. Meynadier et al. 1999;
Guyon 2005; Paul et al. 2013; Bos et al. 2019). Classical focal plane
imaging does not maximize the phase contrast, like the ZWFS, which
explains a loss of sensitivity compared to the fundamental limit
(Paterson 2008). Nevertheless, FPWFS still provides a very high
sensitivity across a wide range of spatial frequencies, in contrast
to, e.g. the Shack–Hartmann wavefront sensor, which has a poor
sensitivity at low spatial frequencies (e.g. Guyon 2005). In practice,
and for the analysis in this paper, the expected total theoretical
residual error for Nmodes statistically independent aberration modes
is expressed by

σ 2
th = Nmodes

1

nimgNph
(rad2), (3)

where nimg and Nph are the number of images and the number of
photons per images, respectively.

3.2 Performance limit of CNNs

To analyse the capability of our CNN in terms of sensitivity, we train
and evaluate different models over a broad range of flux levels: from
102 to 107 photons per image. This corresponds to a range of star
magnitudes mH = 7–19.5 (for 107 and 102 photons, respectively)
assuming the following parameters: an integration time of Ti = 1 s, a
transmission and quantum efficiency equal to 50 per cent, a telescope
diameter of 10 m, and a filter bandwidth of 50 nm. We examine the
two levels of aberrations (70 and 350 nm rms) and the two different
spatial frequency contents (20 and 100 Zernike modes) described in
Section 2.1. This allows us to study the limit of our trained models as
a function of an increased dimensionality of the wavefront sensing
problem.

The results are illustrated in Fig. 4. Each point is the median
residual error of 100 evaluations and the error bars are the 5–
95 per cent percentiles.2 Note that the 100 evaluations refer to
different phase screens, and not just to different photon noise
realizations. These figures show where the performance is limited
by photon noise and where it is limited by the model accuracy.

In the low aberration regime distributed over 20 Zernike coeffi-
cients, we can observe that the CNN reaches the sensitivity limit
defined in equation (3) over a broad range of photon levels. The only
exception is the low flux regime (�1e4) where the error does not
become arbitrarily large but reaches a saturation level at around 70 nm
rms. A similar saturation level is observed at low flux with COFFEE,
a coronagraphic phase diversity method based on a maximum a
posteriori approach, when the appropriate regularization is used
(Paul et al. 2013). In our case, this saturation can be interpreted as an
implicit regularization originating from the training data distribution.
The limit is reached when no aberration can be distinguished from
the noise, in which case the predicted phase tends to zero. When the
level of aberration is increased to 350 nm WFE, we can observe a
plateau at the high signal end. This saturation level is a numerical
limitation and can be reduced by increasing the data set size. See
also Section 4.2.2 for a dedicated discussion.

The same analysis is performed for 100 Zernike modes (see Fig. 4,
bottom). The low aberration regime exhibits a very similar behaviour,
while the high aberration regime case is more strongly influenced by

2Note that this is applicable to all the following figures with error bars.
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5706 G. Orban de Xivry et al.

Figure 4. Residual rms WFE as a function of the flux per image for an input
median rms WFE of 70 nm (orange) and 350 nm (blue). Each point uses a
model specifically trained for that flux and aberration regime. (Top) Low
spatial frequency content with 20 Zernike modes. (Bottom) Higher spatial
frequency content with 100 Zernike modes.

the saturation level due to a suboptimal training. Hence, the accuracy
rarely reaches the theoretical one. Again, this can be mitigated by
increasing the data set size.

3.3 Robustness to changing signal-to-noise ratio

In this section, we explore the robustness of the CNN models under
varying signal levels. The network architectures are trained at a
specific SNR and then, during evaluation, exposed to a range of
SNR. Fig. 5 is the result of six different trainings and 36 different
evaluations, for a median WFE of 70 nm rms and 20 Zernike modes.
At low signal level, the performance moves progressively away from
the photon noise limit as the SNR used in the evaluation decreases,
and converges to 70 nm rms due to the intrinsic noise regularization.
At high signal level, the performance first degrades slightly as the
SNR used in the evaluation increases, and then stagnates to a given
WFE level, which depends on the training SNR. In all cases, the
minimum WFE is reached at the training SNR. It is noteworthy that
the performance degradation is mild in the vicinity of the training
signal level so that a single model might suffice for a range of
observing conditions.

If robustness under a wide range of SNR levels is desired, the
training could be adapted. The distribution of flux in the training
data set should be established based on the range of expected

Figure 5. Robustness to changing photon flux levels. Each curve uses a
different model and is evaluated at six different flux levels. We use here
ResNet-50 trained on data sets with input median rms WFE of 70 nm rms
distributed over 20 Zernike modes.

Figure 6. Residual rms WFE as a function of input rms WFE (40–450 nm
rms WFE) distributed over 20 Zernike modes. In blue, for a ResNet-50 model
trained around 350 nm WFE, in orange around 70 nm WFE, and in green
trained on a uniform distribution of wavefront aberrations ranging from 0 to
450 nm WFE. The dashed line gives the fundamental limit as discussed in
Section 3.1. The dotted line gives the one-to-one relation. The shaded areas
represent the 2–98 per cent rms WFE percentiles in the respective training
data sets.

stellar magnitudes versus desired accuracy, and observing variability.
Alternatively a number of models could be used and selected as a
function of the current stellar magnitude.

3.4 Dynamic range

Here, we analyse the accuracy of the estimated wavefront for different
levels of aberrations. In Fig. 6, we use two different models trained
at low (70 nm rms) and high (350 nm) aberration levels. We test
these models on eight data sets with aberration level ranging from
40 up to 450 nm rms, corresponding to 0.11 up to 1.28 rad rms.
The results show a similar or better accuracy for aberration level
below the trained one, and a rapidly decreasing accuracy at higher
aberration levels.
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The behaviour at low aberration level results from the way our data
sets are generated, where each Zernike coefficient is drawn from
a uniform distribution around zero. Hence, the training implicitly
includes low aberration samples. It is interesting to note that the
evaluation at the trained aberration level (70 and 350 nm, respec-
tively) is actually not where the best performance can be found.
Again this may be explained by the way our data sets are generated,
with a distribution of WFE around a given median. In the case of a
median WFE of 350 nm rms, the aberration distribution extends down
to ∼225 nm (see blue shaded area in Fig. 6), which approximately
coincides with the lowest residual error in Fig. 6. The performance
is here limited by the size of the data set (100 000 entries), and since
the effective number of entries with ≥350 nm WFE is simply lower
than for ≥225 nm WFE in the training data set, the results are better
at lower aberrations than at the median WFE.

We then train a model on a uniform distribution of wavefront
aberrations ranging from 0 to 450 nm rms. To obtain a good training,
we set the weight decay of the Adam optimizer to 1e-7, which is
otherwise set to 0 by default. The result is also shown in Fig. 6. We
observe an intermediate behaviour where the model performs better
at low aberration but slightly worse at higher aberration compared to
the model trained at 350 nm rms.

At higher aberration level, the models are less efficient in picking
up features and extracting useful information. Nevertheless, it is
worth noting that a valid correction extends well beyond the trained
aberration level, and despite a rapidly decreasing accuracy.

Following the results in Fig. 6, we apply iteratively the CNN
model for aberrations well beyond the trained aberration level. At
each iteration, the CNN infers a wavefront, which we subtract from
the input to produce a new pair of PSFs based on the residual
wavefront. We test this iterative approach for 40 different aberration
levels ranging from 500 to 1750 nm. To limit the effect of field-
of-view cropping, the tip-tilt modes are removed from all phase
maps (and the quoted WFE is also calculated without tip-tilt). The
training range of the CNN is here around 350 nm rms. The results
are presented in Fig. 7. We can observe that the CNN properly
converges in a few iterations for initial aberration levels well beyond
its training range. Also, once it has converged, the correction stays
stable. It is only for initial aberration levels �1.1 μm that the rms
WFE either stagnates or starts to diverge. In Fig. 7 (right), two PSFs
are illustrated, with rms WFE of ∼320 and ∼1060 nm, respectively.
Both are well corrected after a few iterations. The morphology of
these images is very different, yet the CNN is able to converge,
which is remarkable. Overall these are very encouraging results for
real applications, typically running in closed-loop, starting with high
levels of aberrations and with the objective of stabilizing the WFE
to the lowest level.

An alternative approach would be of course to train the CNN model
on a wider aberration range for which the application would not need
to be iterative. As a comparison, we trained three additional CNNs3

with larger aberrations: 535, 800, and 1070 nm rms (or 700, 1050,
and 1400 if the tip-tilt was not removed), and we test them on a range
of aberrations from 250 to 1070 nm, similarly to the results presented
in Fig. 6. The bottom line of this comparison is that the residual WFE
increases with the level of aberrations the CNN was trained with, in
particular for training at 350, 535, 800, and 1070, the residual error
is 3.5, 5.2, 13.6, and 27.4 nm rms. While the training can certainly be
improved with, e.g. larger data sets or a better distribution of the input
WFE in the data sets, the results presented in Fig. 7 show that we can

3With 100 000 entries in our data set, and for a photon flux of 1e6.

Figure 7. (Top) Iterative application of the CNN to different levels of
aberrations. (Bottom) Illustration of two PSFs, with rms WFE of 320 (top)
and 1060 nm (bottom); in both cases the CNN converges after a few iterations.

also benefit from the generalization power of CNN, for instance, for
the bootstrapping phase in a closed-loop system, without the need for
more demanding training strategy or different network architectures,
such as recurrent neural networks.

3.5 Robustness to higher order disturbances

In realistic conditions, a wavefront sensor measures the projection
of the phase aberration on a finite set of values, such as Zernike
coefficients or zonal values corresponding to deformable mirror
actuators. Higher order aberrations are thus not sensed and can be
considered as an additional source of disturbance. This is the case,
for example, with the Shack–Hartmann wavefront sensor, where
a limited sampling of the wavefront leads to an aliasing effect
increasing the measurement error. It is therefore of practical interest
to study how this unwanted signal affects the inference of the trained
CNN.

To explore the effect of higher order disturbances, we use different
models trained on phase maps constructed with 20 Zernike modes
and evaluate their accuracy on a data set with 100 Zernike modes.
We consider both ResNet-50 and U-Net models, with input WFE of
70 and 350 nm rms. The residual WFEs (�ϕ = ϕ − ϕ̂) are projected
on 100 Zernike modes and the rms (over 100 different evaluations)
of the obtained Zernike coefficients are calculated. The results are
illustrated in Fig. 8. We can observe a higher loss of accuracy for
higher aberration levels (see Fig. 8, left versus right), and for higher
flux levels (not shown). The simple interpretation is that the CNN
models are more affected by higher order aberrations as they become
more prominent, and therefore distinctive, with respect to the photon
noise. Although a minor effect, it is interesting to note that the direct
phase estimation done by U-Net provides a valid correction beyond
the 20 Zernike modes for which it was trained, while the ResNet-50
is bounded to the first 20 Zernike modes by construction.
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5708 G. Orban de Xivry et al.

Figure 8. Modal rms WFE for two different levels of aberrations: 70 nm rms (left; red and orange) and 350 nm rms (right; purple and blue); and two architectures:
ResNet-50 (top) and U-Net (bottom). The models are exposed to aberrated PSFs with higher order aberrations compared to the training data set (solid lines).
The estimated phase rms WFE (red and purple) and the residual errors (orange and blue) are compared to the true phase rms WFE (grey). The residual errors,
when no higher order aberrations are present, are also plotted in dashed lines. In all cases, the signal per image is 107 photons. For a median input of 70 nm rms,
both ResNet and U-Net reduce the WFE of the low-order modes to about 4 nm rms, while the higher order modes are essentially unaffected and have an rms of
about 30 nm. When the aberrations are larger (350 nm rms), the models start to be significantly affected and the rms error increases to about 80 nm (140 nm) for
the low (high) orders, respectively.

While for NCPA correction, behind an extreme AO system where
residual atmospheric aberrations are kept to a minimum, our training
strategy might be appropriate; for AO application this degradation
might be a showstopper (although we do not fully explore this
here). In fact, beyond the mild robustness offered by the CNN-
based models, these results illustrate the following rule-of-thumb:
the training data should always be as representative as possible of
the real observing conditions.

3.6 Phase diversity: implication of sign ambiguity

To properly recover and avoid any ambiguity on the phase in the
pupil plane using focal plane images requires a unique intensity
measurement for a given phase aberration. This uniqueness is not
generally guaranteed, in particular, for circularly symmetric pupils.
Ambiguities occurring in phase retrieval is extensively discussed in
the literature for applications from image reconstruction to wavefront
sensing (see e.g. Bos et al. 2019, for a review relevant to astronomy).
The non-uniqueness in the case of circularly symmetric pupils is
the well-known sign ambiguity, which results from the Hermitian

properties of Fraunhofer propagation. Indeed, the pupil-plane electric
field Epup(x) and the same field flipped and conjugated E∗

pup(−x)
have the same Fourier transform, and therefore lead to the same
intensity distribution in the focal plane. For an even phase aberration
(defined by ϕeven(x) = ϕeven(− x)), and assuming an even amplitude
distribution across the pupil – which we omit in the following – we
can write

E∗
pup(−x) = exp(−jϕeven(−x)) (4)

= exp(−jϕeven(x)), (5)

and thus

F{exp(−jϕeven(x))} = F{exp(jϕeven(x))}, (6)

i.e. ϕeven(x) and −ϕeven(x) produce the same PSFs. Expressing ϕeven

as a sum of even Zernike modes, ϕeven = ∑
n, m; n = evenan, mZn, m, one

easily understands that the relative sign between even modes is not
ambiguous and the degeneracy reduces to a single sign ambiguity,
regardless of the number of even modes to be evaluated.
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Focal plane wavefront sensing with CNNs 5709

Figure 9. Modal WFE evaluated over 100 different phase maps. In blue, the
input phase map following a spatial power spectrum with a slope of −2. The
other curves give the residual error for three different models: using a single
in-focus PSF, using a single out-of-focus PSF, and using both PSFs.

Many approaches exist to lift this ambiguity (see e.g. Jovanovic
et al. 2018, for high-contrast imaging). Two natural (but not nec-
essarily desired in the way they may affect the observations) ways
are either to introduce a phase diversity as done in this paper or
to use a non-centro symmetric pupil support (e.g. Bos et al. 2019).
Here, we simply illustrate how the CNN behaves with respect to
this sign ambiguity, by comparing the modal rms error for CNN
models trained using two images (as in the previous sections), one
defocused image only and one in-focus image only. The results are
shown in Fig. 9. In the case of a single in-focus PSF, we see that
the residual errors on the even modes correspond to the input error
(the estimation is close to zero) as a result of the ambiguity, while
odd modes are properly sensed. However, the accuracy in the odd
modes is degraded compared to the single defocused case. This is
the result of a suboptimal training and translates in overfitting, which
can be identified by the training and validation curves. This could be
circumvented by adapting the loss function and replacing equation (2)
by the rms error on the odd coefficients only. The single defocused
PSF case does not suffer from sign ambiguity. This is the result of an
implicit prior: the introduced defocus is equal to λ/4 or 550 nm rms,
while the focus term in the aberration to be sensed is drawn from a
uniform distribution in the range ∼[−150, 150] nm rms (for 350 nm
rms WFE and 20 Zernike modes), so that the total focus term is
always positive. The factor

√
2 between the single defocused image

and the two images case is solely due to the increased SNR.

3.7 Effect of field-of-view and PSF sampling

In the results presented in the previous sections, the PSF was sampled
with 4.5 pixels over λ/D, or a pixel scale of 0.22λ/D/px, with a grid
size of 128 × 128 pixels. Here, we study how the PSF sampling
influences the performance. In order to preserve the exact same
network architectures, we keep a fixed grid size of 128 × 128
pixels. Therefore, increasing the PSF sampling means reducing the
field of view and potentially leaving out information. Conversely,
a coarser sampling, in particular, below the Nyquist sampling (i.e.
<2 pixel/λ/D), may lead to a loss of information.

To examine this effect, we generate different data sets with pixel
scales between 0.1λ/D and 1λ/D and we train a new model for each
case. An example of the generated PSF is given in Fig. 10. The

Figure 10. Illustration of different PSF sampling. Starting from (top left),
the pixel scale is [0.1, 0.2, 0.3, 0.4, 0.7, 1] λ/D. Since the PSF grid size is
kept fixed to 128 × 128 pixels, the field of view changes accordingly with,
respectively, [12.8, 25.6, 38.4, 51.2, 89.6, 128] λ/D.

Figure 11. Residual rms WFE for different pixel scales. The same pixel
scale is used for training and evaluation. Each point is a different model. The
Nyquist sampling (0.5λ/D) is indicated by the vertical dotted line. The photon
noise limit is indicated by the horizontal dashed line.

results are illustrated in Fig. 11 for a median rms WFE of 350 nm,
107 photons per image, and 20 Zernike modes. We notice a mild
degradation with increasing pixel scale (for pixel scale >0.5λ/D),
and very similar results for small pixel scales (<0.5λ/D). Above the
Nyquist limit (pixel scale <0.5λ/D), the information loss due to the
field-of-view cropping is negligible at this level of aberrations and
flux. One can expect that in a more aberrated regime, this may start
to have a noticeable impact. Below the Nyquist limit (pixel scale
>0.5λ/D), we notice a loss of accuracy of a factor two. That this
degradation is not more severe may be related to the limited number
of Zernike modes used here, which produce extended signatures
in the focal plane. With an increased spatial frequency content and
higher level of aberrations, the PSFs would break into many speckles,
which are expected to lead to a more serious degradation of the
performance.

4 D ISCUSSION

4.1 Comparison to Gerchberg–Saxton phase retrieval

While CNNs can solve the capture range problem and provide an
initial estimate for gradient-based optimizers in the case of large
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(a) (b)

Figure 12. Comparison of an iterative algorithm to the CNN model. (Left) Implemented GS algorithm for the phase retrieval using two images, one with a
phase diversity. (Top right) Residual rms WFE as a function of photon number per image for the CNN model and for the GS algorithm for two different pixel
sampling of the PSFs: in orange, the same sampling used with the CNN, and in red, Nyquist sampling. (Bottom right) Illustration of the GS convergence for
10 different evaluations with the rms WFE as a function of iteration, and for a sampling of 0.22λ/D per pixels. It takes approximately 20 iterations for the GS
algorithm to converge.

aberrations (Paine & Fienup 2018), it is also interesting to see how
it competes with ‘classical’ approaches in a lower aberration regime
such as explored in this paper. A detailed comparison with the most
efficient algorithms that may exist is outside the scope of this paper.
Rather we compare the CNN models with a standard iterative phase
retrieval algorithm to illustrate where the CNN may be superior. The
Gerchberg–Saxton (GS) iterative algorithm (Gerchberg & Saxton
1972; Fienup 1982) is relatively simple to implement, widely used,
and can be easily adapted to a specific application. To exploit our two
images, one in-focus and one defocused, we implement an algorithm
that uses multiple images in parallel (Milster 2020). The algorithm
is depicted in Fig. 12 (left). Since the phase diversity ϕdiv is known,
it can be appropriately added or removed at different steps of the
algorithm. At the end of each iteration, once the phase diversity is
removed, the pupil plane electric fields are averaged and the output
is used for the next iteration. We compared this parallel approach
to a serial one (e.g. Guyon 2010; Milster 2020) and found it to be
superior.

Since the phase is inferred from the complex exponent, the
phase output from the iterative algorithm needs to be unwrapped.

With phase maps of about 1 rad rms, phase wrapping can occur
(the phase can locally be larger than π ) and we need to take it
into consideration. Phase unwrapping can be challenging and it
is interesting to note that it can also be solved by CNNs (Wang
et al. 2019). To avoid unnecessary complications, we assess the
performance of the iterative algorithm by analysing the phase residual
directly, calculated by ∠ exp (i(ϕ − ϕ̂)), which we expect to be in the
range of [−π , π ].

We reproduce the analysis in Section 3.1 and evaluate both
approaches at different signal levels. For the iterative algorithm,
we consider two different pixel scales: 0.5λ/D per pixel (Nyquist
sampling) and 0.22λ/D per pixel (same sampling as used for
the CNN, see Section 2.1). With Nyquist sampled PSFs, the GS
algorithm provides an accuracy close to the theoretical limit over the
full range of photon levels (see Fig. 12, top right). It surpasses the
CNN model at high flux, where it does not reach a plateau. With the
finer sampling, the GS algorithm becomes less accurate at all signal
levels and reaches a plateau at high flux similar to the CNN. We can
only suspect that the cropping of the PSFs and the way we impose
the amplitude in the image plane have a detrimental effect on the GS
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Table 1. Computational cost of the two CNN architectures for 100 Zernike
modes.

Architectures Number of parameters MACs Model size
(106) (109) (MB)

ResNet-50 23.71 4.11 91
U-Net 13.40 7.77 52

algorithm. While the plateau seen with the CNN is apparently not
due to pixel sampling (see Section 3.7), it may be alleviated by a
larger training data set (see Section 4.2.2).

We also monitor the convergence of the GS algorithm (see
Fig. 12, bottom right). We can see that the iterative algorithm needs
approximately 20 iterations to converge where the CNN performs
a similar or superior inference in just one iteration. While we do
not quantify the computational gain, this likely translates into a
speed advantage for the CNN. For example, Paine & Fienup (2018)
indicated a gain of a factor ∼80 when comparing to non-linear
optimization methods.

Finally, we also explore the performance obtained with a gradient-
based optimizer. More specifically, similarly to Peng et al. (2020),
we implement the image formation in PYTORCH and use its autodif-
ferentiation capabilities to optimize the objective function4 using the
same variant of stochastic gradient descent, i.e. the Adam optimizer.
Our results, not illustrated here for the sake of conciseness, suggest
a similar performance to the GS algorithm but requiring a higher
number of iteration. Hence, in the context of our paper, gradient-
based optimization neither appears to be outperforming the GS
algorithm (whose performance is already close to the theoretical
limit) nor does it require fewer iterations. A thorough exploration
and comparison of iterative methods is, however, outside the scope
of this paper.

4.2 Numerical considerations

In this last section, we discuss two numerical aspects relevant for
practical applications: the computational cost associated with the
CNN models and the influence of the training data set size on
performance.

4.2.1 Computational cost

Computational cost is often measured by the number of floating-
point operations (FLOPs) or the number of multiply accumulated
operations (MACs). The number of MAC, and the number of
parameters and the memory size of the two CNN models are
estimated with the package THOP5 and are given in Table 1. The
number of FLOPs is about twice the number of MACs.

In the case of NCPAs, where a correction is expected at best on
a time-scale of a second, the computational cost given in Table 1
is perfectly acceptable with at most 8–16 GFLOPs per second.
In contrast, for an AO system typically running at 1 kHz, about
8–16 TFLOPs per second would be required. Considering that
a good GPU RTX 2080Ti provides >13 TFLOPs per second in
single precision, it can be considered as a feasible approach from
the computational power standpoint. Its practical implementation,

4We use here the mean square error of the amplitudes in the focal plane.
5See also https://github.com/Lyken17/pytorch-OpCount
er, which only considers the number of multiplication operations to evaluate
the computational costs of our two CNN architectures.

Figure 13. Residual rms WFE as a function of training data set size for
different flux levels and amplitude of the input aberrations. The phase errors
are distributed over 20 Zernike modes. The horizontal lines (solid and dashed)
represent the theoretical limit for a flux of 105 and 107 photons, respectively.
(Top) ResNet-50. (Bottom) U-Net.

ranging from an appropriate software implementation to keeping
latencies to a minimal level and synchronizing the estimation time
from multiple GPUs, if needed, might, however, not be trivial.

However, the numbers given in Table 1 should only be considered
as upper bounds. Indeed, the deployment of CNN-based models on
a real set-up could use compression and acceleration techniques to
reduce the memory and computational cost (e.g. Cheng et al. 2020).
Compression and speed-up ratios of about 5–10 have actually been
reported for ResNet and similar architectures (e.g. Wang et al. 2018).

4.2.2 Influence of training data set size

To try and understand what may limit the CNN models accuracy, we
study the delivered accuracy as a function of the training data set size.
We compare two levels of aberrations (distributed over 20 Zernike
modes) and two levels of photon noise for the two architectures,
ResNet-50 and U-Net. The training data set sizes range from 1000
to 500 000 entries, while in the previous sections we used 100 000
entries. The results are illustrated in Fig. 13.

In the low aberration (70 nm rms) and low flux (105 photons per
image) regime, the accuracy quickly converges with increasing data
set size and requires only >5000 entries. Increasing the flux by two
orders of magnitude (107 photons per image), the SNR is boosted
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Figure 14. Residual rms WFE as a function of flux level for three training
data set sizes: 5000, 50 000, and 500 000 entries, respectively, using the U-Net
model. Increasing the data set size by a factor 10 reduces the model error by
a factor of two approximately, at high flux levels.

by a factor 10 and finer details can be picked up during training.
The data set then needs to be larger with >100 000 entries for the
training to fully converge and to reach the sub-nm theoretical floor.
For aberrations five times larger (350 nm rms), the larger parameter
space requires a substantially larger data set with �500 000 entries
to attain the theoretical limit in the low flux case. Finally, at higher
flux, we do not reach the theoretical limit, which would require a
much larger data set, i.e. >>500 000 entries. Comparing ResNet-50
and U-Net, we can observe that both architectures reach very similar
performance.

To emphasize the effect of flux, which directly relates to the
amount of extractable information, we plot in Fig. 14 the rms WFE
as a function of photon level for three different training set sizes. The
interpretation is relatively straightforward: in each case the accuracy
is close to the theoretical limit until it reaches a plateau. The level
of this plateau depends on the training data set size, where a 10-fold
increase leads to approximately a factor two improvement of the rms
WFE.

The analysis performed here illustrates the need for large training
sets when the problem parameter space increases if one wants to
reach the finest accuracy, i.e. the photon noise limit. For NCPA
correction, the range of data set sizes explored here is presumably
large enough. For AO that has likely a larger parameter space
(larger range of aberration amplitudes and larger number of modes
to be controlled) but possibly a lower accuracy requirement, one
may trade-off accuracy with data set size for practical reasons, in
particular, if the training set is composed of experimental data.

5 C O N C L U S I O N S

In this paper, we explored the use of deep CNNs to perform image-
based wavefront sensing. We focused on low level of aberrations
(0.1–1 rad rms WFE) and a limited number of spatial frequencies
(20–100 Zernike modes). These parameters are characteristic of
NCPA measurements on large ground-based telescopes (8–40m; e.g.
VLT or ELT). Our simulations suggest that the CNN models are able
to leverage the high sensitivity of FPWFS over a broad range of signal
levels. In terms of dynamic range, we have demonstrated successful
correction for aberration levels up to λ/6 rms WFE in one iteration,
and �λ/2 in 5–10 iterations. The models are robust under reasonable
flux changes, with a mild departure from the photon noise limit with

changing SNR level. The prediction accuracy of the trained models
is, however, affected by unknown disturbances such as higher order
aberrations, and the training strategy should be adapted accordingly.

The type of architecture, and in particular the choice of approach
between the Zernike coefficients (ResNet) versus the direct phase
map (U-Net) estimations, has a negligible impact in our experiments
(contrary to, e.g. Guo et al. 2019). In fact, we have used ResNet-50
and U-Net interchangeably. U-Net does have a slight edge in terms
of generalization power, as illustrated in Fig. 8, but this advantage is
too marginal to justify alone a preference for this architecture. When
compared to an iterative phase retrieval algorithm, the CNN models
display similar and often superior accuracies in just one iteration,
while the iterative algorithm requires 10–20 iterations to converge.
Hence, in addition to a close-to-optimum estimation accuracy, CNN
models are expected to be faster.

While using CNN-based FPWFS for NCPA measurement seems
readily applicable, its utilization for AO appears more challenging
for an equivalent telescope diameter. Indeed, AO calls for the sensing
of a larger number of modes (at least a factor 10) and larger aberration
levels (a factor ∼10 in the bootstrapping phase of the AO closed-
loop) compared to NCPA measurement, hence the dimensionality
is largely increased compared to NCPA measurement. Finally, AO
also requires sub-ms inference speed potentially constraining the
CNN architecture and its implementation. In the prospect of real
application, an encouraging result of our simulation is that CNNs
can be applied iteratively, in closed-loop, to reduce the WFE to a
low level. In particular, the WFE stays at a stable low level, close to
the expected theoretical limit, and is able to converge in just a few
iterations for initial aberration levels well beyond its training range.

Real-life data are, however, more complex than our simulated
images, including their finite wavelength range, the different detector
noises, the residual atmospheric perturbations, imperfect optical
alignment, etc. Some of these effects can be anticipated and sim-
ulated, such as the polychromaticity, which will wash out part
of the high spatial frequency information, but some others may
not be. While the instrument model can be improved to generate
more realistic labelled data sets, ultimately experimental data are
needed for the training of the CNN models. How to best exploit
a limited experimental data set is thus one of the key challenge
for future applications. Another key aspect in the context of NCPA
measurements is to maintain a 100 per cent science duty cycle despite
the phase diversity required to lift any ambiguity in the FPWFS
measurement. An interesting avenue in that context is to leverage the
diversity introduced by the changing atmosphere using, for example,
long short term memory networks to exploit its temporal structure.
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