[en] Conventional magnetic resonance imaging (cMRI) is poorly sensitive to pathological changes related to multiple sclerosis (MS) in normal-appearing white matter (NAWM) and grey matter (GM), with the added difficulty of not being very reproducible. Quantitative MRI (qMRI) on the other hand attempts to represent physical properties of tissues, making it an ideal candidate for quantitative medical image analysis, or radiomics. We therefore hypothesized that qMRI-based radiomic features have added diagnostic value in MS compared to cMRI. This study investigated the ability of cMRI (T1w) and qMRI features extracted from WM, NAWM, and GM to distinguish between MS patients (MSP) and healthy control subjects (HCS). We developed exploratory radiomic classification models on a dataset comprising 36 MSP and 36 HCS recruited in CHU Liege, Belgium, acquired with cMRI and qMRI. For each image type and region of interest, qMRI radiomic models for MS diagnosis were developed on a training subset and validated on a testing subset. Radiomic models based on cMRI were developed on the entire training dataset and externally validated on open-source datasets with 167 HCS and 10 MSP. Ranked by region of interest, the best diagnostic performance was achieved in the whole WM. Here the model based on magnetization transfer imaging (a type of qMRI) features yielded a median area under the receiver operating characteristic curve (AUC) of 1.00 in the testing sub-cohort. Ranked by image type, the best performance was achieved by the magnetization transfer models, with median AUCs of 0.79 (0.69-0.90 90% CI) in NAWM and 0.81 (0.71-0.90) in GM. External validation of the T1w models yielded an AUC of 0.78 (0.47-1.00) in whole WM, demonstrating a large 95% CI and low sensitivity of 0.30 (0.10-0.70). This exploratory study indicates that qMRI Radiomics could provide efficient diagnostic information using NAWM and GM analysis in MSP. T1w radiomics could be useful for a fast and automated check of conventional MRI for WM abnormalities once acquisition and reconstruction heterogeneities have been overcome. Further prospective validation is needed involving more data for better interpretation and generalization of the results.
Research Center/Unit :
GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège Maastricht University, Precision Medicine department
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Lavrova, Elizaveta ✱; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Aging & Memory
LOMMERS, Emilie ✱; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de neurologie
WOODRUFF, Henry ✱; Universiteit Maastricht > Precision Medicine
MAQUET, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de neurologie
Salmon, Eric ✱; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalid. cogn.
LAMBIN, Philippe ✱
Phillips, Christophe ✱; Université de Liège - ULiège > GIGA CRC In vivo Im. - Neuroimaging, data acquisi. & proces.
✱ These authors have contributed equally to this work.
Language :
English
Title :
Exploratory radiomic analysis of conventional versus quantitative brain MRI: Towards automatic diagnosis of early multiple sclerosis
Publication date :
14 June 2021
Journal title :
Frontiers in Neuroscience
ISSN :
1662-4548
eISSN :
1662-453X
Publisher :
Frontiers Media S.A., Switzerland
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 766276 - PREDICT - A new era in personalised medicine: Radiomics as decision support tool for diagnostics and theragnostics in oncology
Name of the research project :
Quantitative Neuro-Imaging with Radiomics and Deep Learning in two main neurological diseases: Multiple Sclerosis and Stroke
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique Maastricht Imaging Valley EC - European Commission
Abu-Mostafa Y., Magdon-Ismail M., Lin H., (2012). Learning from Data, Vol. 4. New York. NY: AMLBook.
Amadasun M., King R., (1989). Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybernet. 19 1264–1274.
Andica C., Hagiwara A., Hori M., Nakazawa M., Goto M., Koshino S., et al. (2018). Automated brain tissue and myelin volumetry based on quantitative MR imaging with various in-plane resolutions. J. Neuroradiol. 45 164–168.
Bonnier G., Roche A., Romascano D., Simioni S., Meskaldji D., Rotzinger D., et al. (2014). Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Ann. Clin. Transl. Neurol. 1 423–432. 10.1002/acn3.68 25356412
Breiman L., (2001). Random forests. Mach. Learn. 45 5–32.
Chen J., Taylor B., Palmer A. J., Kirk-Brown A., van Dijk P., Simpson S., Jr.et al. (2019). Estimating MS-related work productivity loss and factors associated with work productivity loss in a representative Australian sample of people with multiple sclerosis. Mult. Scler. 25 994–1004. 10.1177/1352458518781971 29911469
Collins G. S., Reitsma J. B., Altman D. G., Moons K. G., (2015). Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) the TRIPOD statement. Circulation 131 211–219.
Commowick O., Istace A., Kain M., Laurent B., Leray F., Simon M., et al. (2018). Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure. Sci. Rep. 8:13650.
Coroller T. P., Grossmann P., Hou Y., Rios Velazquez E., Leijenaar R. T., Hermann G., et al. (2015). CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 114 345–350. 10.1016/j.radonc.2015.02.015 25746350
Cotton F., Kremer S., Hannoun S., Vukusic S., Dousset V., Imaging Working Group of the Observatoire Français de la Sclérose en Plaques (2015). OFSEP, a nationwide cohort of people with multiple sclerosis: consensus minimal MRI protocol. J. Neuroradiol. 42 133–140. 10.1016/j.neurad.2014.12.001 25660217
Davda N., Tallantyre E., Robertson N. P., (2019). Early MRI predictors of prognosis in multiple sclerosis. J. Neurol. 266 3171–3173. 10.1007/s00415-019-09589-2 31701334
Feng F., Wang P., Zhao K., Zhou B., Yao H., Meng Q., et al. (2018). Radiomic features of hippocampal subregions in Alzheimer’s disease and amnestic mild cognitive impairment. Front. Aging Neurosci. 10:290. 10.3389/fnagi.2018.00290 30319396
Filippi M., Brück W., Chard D., Fazekas F., Geurts J. J., Enzinger C., et al. (2019). Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 18 198–210.
Galloway M. M., (1975). Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4 172–179.
Gracien R.-M., Maiworm M., Brüche N., Shrestha M., Nöth U., Hattingen E., et al. (2020). How stable is quantitative MRI?–Assessment of intra-and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs. Neuroimage 207 116364.
Gracien R. M., Reitz S. C., Hof S. M., Fleischer V., Zimmermann H., Droby A., et al. (2016). Assessment of cortical damage in early multiple sclerosis with quantitative T2 relaxometry. NMR Biomed. 29 444–450. 10.1002/nbm.3486 26820580
Griffin C. M., Chard D. T., Parker G. J., Barker G. J., Thompson A. J., Miller D. H., (2002). The relationship between lesion and normal appearing brain tissue abnormalities in early relapsing remitting multiple sclerosis. J. Neurol. 249 193–199.
Guyon I., Weston J., Barnhill S., Vapnik V., (2002). Gene selection for cancer classification using support vector machines. Mach. Learn. 46 389–422.
Hagiwara A., Hori M., Yokoyama K., Nakazawa M., Ueda R., Horita M., et al. (2017a). Analysis of white matter damage in patients with multiple sclerosis via a novel in vivo mr method for measuring myelin, axons, and G-Ratio. AJNR Am. J. Neuroradiol. 38 1934–1940. 10.3174/ajnr.A5312 28775058
Hagiwara A., Hori M., Yokoyama K., Takemura M. Y., Andica C., Tabata T., et al. (2017b). Synthetic MRI in the detection of multiple sclerosis plaques. AJNR Am. J. Neuroradiol. 38 257–263. 10.3174/ajnr.A5012 27932506
Haralick R. M., Shanmugam K., Dinstein I. H., (1973). Textural features for image classification. IEEE Trans. Syst. Man. Cybernet. SMC-3, 610–621.
Hastie T., Tibshirani R., Friedman J., (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Berlin: Springer Science & Business Media.
Hua J., Xiong Z., Lowey J., Suh E., Dougherty E. R., (2005). Optimal number of features as a function of sample size for various classification rules. Bioinformatics 21 1509–1515.
Jakimovski D., Bergsland N., Dwyer M. G., Hagemeier J., Ramasamy D. P., Szigeti K., et al. (2020). Long-standing multiple sclerosis neurodegeneration: volumetric magnetic resonance imaging comparison to Parkinson’s disease, mild cognitive impairment, Alzheimer’s disease, and elderly healthy controls. Neurobiol. Aging 90 84–92. 10.1016/j.neurobiolaging.2020.02.002 32147244
Johnson W. E., Li C., Rabinovic A., (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8 118–127.
Kaunzner U. W., Gauthier S. A., (2017). MRI in the assessment and monitoring of multiple sclerosis: an update on best practice. Ther. Adv. Neurol. Disord. 10 247–261. 10.1177/1756285617708911 28607577
Kobelt G., Thompson A., Berg J., Gannedahl M., Eriksson J., Group M. S., et al. (2017). New insights into the burden and costs of multiple sclerosis in Europe. Multi. Scler. J. 23 1123–1136.
Lambin P., Leijenaar R. T., Deist T. M., Peerlings J., De Jong E. E., Van Timmeren J., et al. (2017a). Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14 749–762.
Lambin P., Rios-Velazquez E., Leijenaar R., Carvalho S., Van Stiphout R. G., Granton P., et al. (2012). Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48 441–446.
Lambin P., Zindler J., Vanneste B. G., De Voorde L. V., Eekers D., Compter I., et al. (2017b). Decision support systems for personalized and participative radiation oncology. Adv. Drug Deliv. Rev. 109 131–153. 10.1016/j.addr.2016.01.006 26774327
Lehmann T. M., Gonner C., Spitzer K., (1999). Survey: interpolation methods in medical image processing. IEEE Trans. Med. Imaging 18 1049–1075. 10.1109/42.816070
Li Y., Jiang J., Lu J., Jiang J., Zhang H., Zuo C., (2019). Radiomics: a novel feature extraction method for brain neuron degeneration disease using 18F-FDG PET imaging and its implementation for Alzheimer’s disease and mild cognitive impairment. Ther. Adv. Neurol. Disord. 12:1756286419838682.
Liu Y., Dong D., Zhang L., Zang Y., Duan Y., Qiu X., et al. (2019). Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder. Eur. Radiol. 29 4670–4677. 10.1007/s00330-019-06026-w 30770971
Liu Z., Wang Y., Liu X., Du Y., Tang Z., Wang K., et al. (2018). Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas. Neuroimage Clin. 19 271–278. 10.1016/j.nicl.2018.04.024 30035021
Lommers E., Guillemin C., Reuter G., Fouarge E., Delrue G., Collette F., et al. (2021). Voxel-Based quantitative MRI reveals spatial patterns of grey matter alteration in multiple sclerosis. Hum. Brain Mapp. 42 1003–1012. 10.1002/hbm.25274 33155763
Lommers E., Simon J., Reuter G., Delrue G., Dive D., Degueldre C., et al. (2019). Multiparameter MRI quantification of microstructural tissue alterations in multiple sclerosis. Neuroimage Clin. 23:101879. 10.1016/j.nicl.2019.101879 31176293
Ma X., Zhang L., Huang D., Lyu J., Fang M., Hu J., et al. (2019). Quantitative radiomic biomarkers for discrimination between neuromyelitis optica spectrum disorder and multiple sclerosis. J. Magnet. Resonan. Imaging 49 1113–1121.
Marciniewicz E., Podgorski P., Sasiadek M., Bladowska J., (2019). The role of MR volumetry in brain atrophy assessment in multiple sclerosis: a review of the literature. Adv. Clin. Exp. Med. 28 989–999. 10.17219/acem/94137 30729761
Oshiro T. M., Perez P. S., Baranauskas J. A., (2012). How many trees in a random forest? Paper Presented at the International Workshop on Machine Learning and Data Mining in Pattern Recognition, Vol. 7376 ed. Perner P., (Berlin: Springer), 154–168.
Phillips C., Pernet C., (2017). “Unifying lesion masking and tissue probability maps for improved segmentation and normalization,” in Proceedings of the 23rd Annual Meeting of the Organization for Human Brain Mapping, (Vancouver, BC).
Platt J., (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Marg. Class. 10 61–74.
Polman C. H., Reingold S. C., Banwell B., Clanet M., Cohen J. A., Filippi M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69 292–302. 10.1002/ana.22366 21387374
Prasanna P., Patel J., Partovi S., Madabhushi A., Tiwari P., (2017). Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur. Radiol. 27 4188–4197.
Reitz S. C., Hof S. M., Fleischer V., Brodski A., Groger A., Gracien R. M., et al. (2017). Multi-parametric quantitative MRI of normal appearing white matter in multiple sclerosis, and the effect of disease activity on T2. Brain Imaging Behav. 11 744–753. 10.1007/s11682-016-9550-5 27138529
Rizzo S., Botta F., Raimondi S., Origgi D., Fanciullo C., Morganti A. G., et al. (2018). Radiomics: the facts and the challenges of image analysis. Eur. Radiol. Exp. 2:36.
Rogers W., Thulasi Seetha S., Refaee T. A. G., Lieverse R. I. Y., Granzier R. W. Y., Ibrahim A., et al. (2020). Radiomics: from qualitative to quantitative imaging. Br. J. Radiol. 93:20190948. 10.1259/bjr.20190948 32101448
Saccenti L., Andica C., Hagiwara A., Yokoyama K., Takemura M. Y., Fujita S., et al. (2019). Brain tissue and myelin volumetric analysis in multiple sclerosis at 3T MRI with various in-plane resolutions using synthetic MRI. Neuroradiology 61 1219–1227.
Schmidt P., Gaser C., Arsic M., Buck D., Forschler A., Berthele A., et al. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. Neuroimage 59 3774–3783. 10.1016/j.neuroimage.2011.11.032 22119648
Souza R., Lucena O., Garrafa J., Gobbi D., Saluzzi M., Appenzeller S., et al. (2018). An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement. Neuroimage 170 482–494. 10.1016/j.neuroimage.2017.08.021 28807870
Sun C., Wee W. G., (1983). Neighboring gray level dependence matrix for texture classification. Comput. Vision Graph. Image Process. 23 341–352.
Tabelow K., Balteau E., Ashburner J., Callaghan M. F., Draganski B., Helms G., et al. (2019). hMRI–A toolbox for quantitative MRI in neuroscience and clinical research. Neuroimage 194 191–210.
Thibault G., Fertil B., Navarro C., Pereira S., Cau P., Levy N., et al. (2013). Shape and texture indexes application to cell nuclei classification. Int. J. Pattern Recogn. Artific. Intell. 27:1357002.
Thompson A. J., Banwell B. L., Barkhof F., Carroll W. M., Coetzee T., Comi G., et al. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17 162–173. 10.1016/S1474-4422(17)30470-2
Treaba C. A., Granberg T. E., Sormani M. P., Herranz E., Ouellette R. A., Louapre C., et al. (2019). Longitudinal characterization of cortical lesion development and evolution in multiple sclerosis with 7.0-T MRI. Radiology 291 740–749. 10.1148/radiol.2019181719 30964421
Trip S. A., Miller D. H., (2005). Imaging in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 76 Suppl. 3(suppl. 3) iii11–iii18. 10.1136/jnnp.2005.073213 16107385
Tustison N. J., Avants B. B., Cook P. A., Zheng Y., Egan A., Yushkevich P. A., et al. (2010). N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29 1310–1320. 10.1109/TMI.2010.2046908 20378467
van Griethuysen J. J. M., Fedorov A., Parmar C., Hosny A., Aucoin N., Narayan V., et al. (2017). Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77 e104–e107. 10.1158/0008-5472.CAN-17-0339 29092951
van Timmeren J. E., Leijenaar R. T., van Elmpt W., Reymen B., Oberije C., Monshouwer R., et al. (2017). Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. Radiother. Oncol. 123 363–369.
Wallin M. T., Culpepper W. J., Nichols E., Bhutta Z. A., Gebrehiwot T. T., Hay S. I., et al. (2019). Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease study 2016. Lancet Neurol. 18 269–285.
Weiskopf N., Mohammadi S., Lutti A., Callaghan M. F., (2015). Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. Curr. Opin. Neurol. 28 313–322. 10.1097/WCO.0000000000000222 26132532
Weiskopf N., Suckling J., Williams G., Correia M. M., Inkster B., Tait R., et al. (2013). Quantitative multi-parameter mapping of R1, PD∗, MT, and R2∗ at 3T: a multi-center validation. Front. Neurosci. 7:95. 10.3389/fnins.2013.00095 23772204
Yoo Y., Tang L. Y., Brosch T., Li D. K., Kolind S., Vavasour I., et al. (2018). Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. Neuroimage Clin. 17 169–178.
Zivadinov R., Leist T. P., (2005). Clinical-magnetic resonance imaging correlations in multiple sclerosis. J. Neuroimaging 15(4 Suppl.) 10S–21S. 10.1177/1051228405283291 16385015
Zurawski J., Tauhid S., Chu R., Khalid F., Healy B. C., Weiner H. L., et al. (2020). 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. Mult. Scler. J. 26 177–187.
Zwanenburg A., Leger S., Vallières M., Löck S., (2016). Image biomarker standardisation initiative. arXiv [Preprint]. arXiv:1612.07003.