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  Abstract
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Conventional magnetic resonance imaging (cMRI) is poorly sensitive to pathological changes related to multiple sclerosis (MS) in
normal-appearing white matter (NAWM) and grey matter (GM), with the added difficulty of not being very reproducible.
Quantitative MRI (qMRI) on the other hand attempts to represent physical properties of tissues, making it an ideal candidate for
quantitative medical image analysis, or radiomics. We therefore hypothesized that qMRI-based radiomic features have added
diagnostic value in MS compared to cMRI. This study investigated the ability of cMRI (T1w) and qMRI features extracted from WM,
NAWM, and GM to distinguish between MS patients (MSP) and healthy control subjects (HCS). We developed exploratory radiomic
classification models on a dataset comprising 36 MSP and 36 HCS recruited in CHU Liege, Belgium, acquired with cMRI and qMRI. For
each image type and region of interest, qMRI radiomic models for MS diagnosis were developed on a training subset and validated
on a testing subset. Radiomic models based on cMRI were developed on the entire training dataset and externally validated on
open-source datasets with 167 HCS and 10 MSP. Ranked by region of interest, the best diagnostic performance was achieved in the
whole WM. Here the model based on magnetization transfer imaging (a type of qMRI) features yielded a median area under the
receiver operating characteristic curve (AUC) of 1.00 in the testing sub-cohort. Ranked by image type, the best performance was
achieved by the magnetization transfer models, with median AUCs of 0.79 (0.69-0.90 90% CI) in NAWM and 0.81 (0.71-0.90) in GM.
External validation of the T1w models yielded an AUC of 0.78 (0.47-1.00) in whole WM, demonstrating a large 95% CI and low
sensitivity of 0.30 (0.10-0.70). This exploratory study indicates that qMRI Radiomics could provide efficient diagnostic information
using NAWM and GM analysis in MSP. T1w radiomics could be useful for a fast and automated check of conventional MRI for WM
abnormalities once acquisition and reconstruction heterogeneities have been overcome. Further prospective validation is needed
involving more data for better interpretation and generalization of the results.

   

  Contribution to the field

Multiple sclerosis is a neurodegenerative disorder of the central nervous system, leading to physical and mental disability. It is
essential to diagnose it at the early stages of the demyelination process. The reliable biomarkers are still under development. The
demyelination leads to focal white matter lesions, originating the symptoms and being detectable with magnetic resonance
imaging. However, clinical magnetic resonance images are expressed in arbitrary units, depending on many factors, which
disturbs data comparison in multi-center studies. Additionally, they represent only the visual contrast, which compromises the
objective analysis. Moreover, recent studies showed that diffuse damages appear at the early stages of the disease. However,
clinical magnetic resonance imaging is not sensitive to these changes. Thus, we combined quantitative magnetic resonance imaging
and radiomics to develop a reproducible and objective approach for diagnosing multiple sclerosis. For this, we used a unique
dataset containing both clinical and quantitative magnetic resonance imaging of both multiple sclerosis patients and healthy control
subjects. We used radiomic features extracted from different brain tissues and different image types to train machine-learning
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models for binary classification between multiple sclerosis patients and healthy control subjects. We compared the models based on
clinical and quantitative magnetic resonance images. For models based on clinical magnetic resonance images, we performed an
external validation. We could not validate models based on quantitative magnetic resonance images because of the data uniqueness
at the moment. Therefore, the performed study is exploratory, demonstrating the potential of quantitative magnetic resonance
imaging and radiomics in multiple sclerosis studies. We reported the current limitations that are indicating directions for further
research.
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Abstract 15 

Conventional magnetic resonance imaging (cMRI) is poorly sensitive to pathological changes related 16 

to multiple sclerosis (MS) in normal-appearing white matter (NAWM) and grey matter (GM), with the 17 

added difficulty of not being very reproducible. Quantitative MRI (qMRI) on the other hand attempts 18 

to represent physical properties of tissues, making it an ideal candidate for quantitative medical image 19 

analysis, or radiomics. We therefore hypothesized that qMRI-based radiomic features have added 20 

diagnostic value in MS compared to cMRI. This study investigated the ability of cMRI (T1w) and 21 

qMRI features extracted from WM, NAWM, and GM to distinguish between MS patients (MSP) and 22 

healthy control subjects (HCS). We developed exploratory radiomic classification models on a dataset 23 

comprising 36 MSP and 36 HCS recruited in CHU Liege, Belgium, acquired with cMRI and qMRI. 24 

For each image type and region of interest, qMRI radiomic models for MS diagnosis were developed 25 

on a training set and validated on a testing set. Radiomic models based on cMRI were developed on 26 

the entire training dataset and externally validated on open-source datasets with 167 HCS and 10 MSP. 27 

Ranked by region of interest, the best diagnostic performance was achieved in the whole WM. Here 28 

the model based on magnetization transfer imaging (a type of qMRI) features yielded a median area 29 

under the receiver operating characteristic curve (AUC) of 1.00 in the testing subset. Ranked by image 30 

type, the best performance was achieved by the magnetization transfer models, with median AUCs of 31 

0.81 (0.74-0.89 90% CI) in NAWM and 0.88 (0.82-0.94) in GM. External validation of the T1w models 32 

yielded an AUC of 0.65 (0.30-0.85) in whole WM, demonstrating a large 95% CI and low sensitivity 33 

of 0.30 (0.10-0.70). This exploratory study indicates that qMRI radiomics could provide efficient 34 

diagnostic information using NAWM and GM analysis in MSP. T1w radiomics could be useful for a 35 
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fast and automated check of conventional MRI for WM abnormalities once acquisition and 36 

reconstruction heterogeneities have been overcome. Further prospective validation is needed involving 37 

more data for better interpretation and generalization of the results. 38 

1 Introduction 39 

Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system, responsible for focal 40 

and diffuse damages, including both demyelination and neurodegeneration, and often leading to 41 

physical and mental disability (Lassmann, 2018; Chen et al., 2019). In 2016, there were more than 2 42 

million prevalent cases globally (Wallin et al., 2019). In Europe, the overall mean costs per patient 43 

were more than €50k (adjusted to 2015 purchasing power parity) in severe disease (Kobelt et al., 2017). 44 

Early diagnosis in MS is challenging, because pathology mechanisms are not yet completely 45 

understood, and disease biomarker discovery is still ongoing. The McDonald criteria is currently used 46 

for diagnosis (Thompson et al., 2018). It assimilates information about clinical relapses, focal white 47 

matter (WM) lesions (plaques) visualized with conventional magnetic resonance imaging (cMRI), and 48 

cerebrospinal fluid (CSF) analysis (Thompson et al., 2018; Kaunzner & Gauthier, 2017; Oh, Vidal-49 

Jordana, & Montalban, 2018; Trip & Miller, 2005). If the patient does not meet the diagnostic criteria, 50 

the diagnosis of MS is provisionally not retained. Although cMRI is playing a valuable role in the 51 

routine clinical practice, it merely captures a very small proportion of MS-related pathological 52 

processes (Filippi et al., 2019; Zivadinov & Leist, 2005). It is particularly not sensitive to detect and 53 

track diffuse pathological changes occurring both in the normal appearing white matter (NAWM) and 54 

grey matter (GM). These changes appear in the early stages of the disease and better correlate with 55 

clinical outcomes than the only WM focal lesion load (Griffin et al., 2002; Yoo et al., 2018; Bonnier 56 

et al., 2014; Treaba et al., 2019; Davda, Tallantyre, & Robertson, 2019). Additionally, routine cMRI 57 

voxel intensities are expressed in arbitrary units, which vary based on a large number of factors, 58 

including the patient being examined, equipment, and protocol being used. This makes MRI analysis 59 

strongly dependent on the medical specialist’s expertise, and hinders data reproducibility and 60 

comparison in follow-up and cross-sectional studies. Therefore, there is an unmet clinical need for 61 

development and automated detection of quantitative and objective early MS biomarkers. 62 

Quantitative MRI (qMRI) potentially overcomes these limitations by quantifying physical micro-63 

structural properties of brain tissues in standardized units. Commonly, some of the following 64 

parameters are estimated: longitudinal and effective transverse relaxation rates (R1 and R2*, 65 

respectively) or times (T1 and T2*, respectively), proton density (PD), magnetization transfer (MT) 66 

saturation, and a number of diffusion MRI (dMRI) metrics. Values in qMRI maps are linked to 67 

biological tissues’ physical properties, such as axonal myelination (MT, R1, R2*, T1, dMRI), iron 68 

accumulation (R2*, T2*), and free water proportion (PD) (Nikolaus Weiskopf et al., 2013; N. 69 

Weiskopf, Mohammadi, Lutti, & Callaghan, 2015; Tabelow et al., 2019). It has been shown that qMRI 70 

data is fairly reproducible between different scanners and attractive for multi-center studies (R.-M. 71 

Gracien et al., 2020). Current MS research compares the qMRI properties of brain between healthy 72 

control subjects (HCS) and MS patients (MSP) (Yoo et al., 2018; Reitz et al., 2017; Lommers et al., 73 

2019; Hagiwara, Hori, Yokoyama, Nakazawa, et al., 2017; Andica et al., 2018; Saccenti et al., 2019). 74 

It has been shown that with specific qMRI sequences, more MS-related damages can be detected 75 

compared with cMRI using similar acquisition times (Hagiwara, Hori, Yokoyama, Takemura, et al., 76 

2017). Furthermore, it has been shown that qMRI reveals pathological GM alterations (Lommers et 77 

al., 2021) and early MS-related GM changes (R. M. Gracien et al., 2016).  78 
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Quantitative imaging biomarkers’ discovery is currently experiencing a large increase in research 79 

interest, and radiomics is rapidly emerging as a major tool in radiology. Radiomics is a high-throughput 80 

imaging data quantification approach, aimed to calculate quantitative descriptors of medical images to 81 

characterize the underlying biology and establish correlation with clinical endpoints (Lambin et al., 82 

2012; Philippe Lambin et al., 2017; Rogers et al., 2020). Radiomics has shown promise in personalized 83 

medicine for cancer treatment (Prasanna, Patel, Partovi, Madabhushi, & Tiwari, 2017; Coroller et al., 84 

2015; P. Lambin et al., 2017; van Timmeren et al., 2017) and is already applied in neurology to predict 85 

epilepsy in patients with low-grade gliomas (Z. Liu et al., 2018), to distinguish between MS and 86 

neuromyelitis optica spectrum disorders on the spine MRI (Y. Liu et al., 2019; Ma et al., 2019), and to 87 

differentiate Alzheimer’s disease from mild cognitive impairment on MRI and positron emission 88 

tomography (Feng et al., 2018; Li et al., 2019). The standard pipeline for radiomic analysis is presented 89 

in Figure 1. 90 

Within the present study, we hypothesized that cMRI- and qMRI-based radiomic models have a 91 

diagnostic value in MS, while qMRI-based features have an advantage in the detection of diffuse 92 

damages. The objective of the study was to investigate the ability of radiomic features found in WM, 93 

NAWM, and GM, extracted from cMRI and qMRI maps, to distinguish between HCS and MSP. We 94 

aimed to compare the diagnostic value of the different image types in different brain tissues. For this, 95 

radiomic classification models were developed and tested, and cMRI models were validated on external 96 

publicly available datasets. 97 

2 Materials and methods 98 

2.1 Study design 99 

This study was performed on three datasets: dataset 1 (DS1) contains both cMRI (T1w, FLAIR) and 100 

four types of qMRI maps (PD, MT, R1, and R2*) of both MSP and HCS, dataset 2 (DS2) contains 101 

cMRI (T1W) of HCS, and dataset 3 (DS3) contains cMRI of MSP (T1w, FLAIR), see Table 1. DS2 102 

and DS3 were combined into one validation dataset (DSV) using data selection and additional pre-103 

processing to minimize any mismatch with DS1 regarding demographics and image acquisition 104 

parameters. For each participant the same brain tissue segmentation method was applied. DS1 was 105 

randomly split and used to train and test multi-channel qMRI models, as well as being used for training 106 

cMRI models, while DSV was used to validate the cMRI models. The observations from test set were 107 

kept apart from train set and were used only to test the models. For each participant radiomic features 108 

were independently extracted from whole WM, NAWM, and GM regions from all available image 109 

types. For MSP, WM volume included combined NAWM and focal WM lesions. Since HCS do not 110 

have focal WM lesions, for them WM and NAWM volumes are matching.  111 

With the addition of models combining features extracted from all four qMRI maps, a total of 18 112 

models were trained on DS1 (3 ROIs, 5 image types and combination thereof), of which 3 models (3 113 

ROIs, 1 image type) were validated on DSV. All feature selection and model training were performed 114 

in the respective training datasets. The testing and/or validation datasets were kept apart and were used 115 

only for evaluation purposes. The study design is detailed in Figure 2. For each step, workflow 116 

execution times were recorded and the averages reported. 117 

2.2 Data description 118 

Dataset 1 (DS1) is a private dataset consisting of 72 participants, 36 MSP with relapsing-remitting and 119 

progressive forms (CHU Liege, Belgium) and 36 HCS (GIGA-CRC in vivo imaging, University of 120 
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Liege, Liege, Belgium), acquired within an MS cross-sectional study (local ethic committee approval 121 

B707201213806) retrospectively collected between 2013 and 2017 (Lommers et al., 2019). It contains 122 

cMRI data (T1w for all the participants and FLAIR only for the MSP) and qMRI maps (PD, MT, R1, 123 

R2*, see Figure 3). The details of the MRI protocol are available in (Lommers et al., 2019) and in the 124 

Supplementary Table 1.  The inclusion criteria were: (1) age between 18 and 65 years, (2) Expanded 125 

Disability Status Scale (EDSS) not more than 6.5, (3) no relapse in the previous four weeks, (4) MRI 126 

compatibility. Additionally, MS patients with vascular risk factors and comorbidities were excluded to 127 

minimize the risk of disturbance caused by potential microvascular lesions. MS status was estimated 128 

by CHU Liege neurology specialists, based on McDonald’s criteria 2010 (Polman et al., 2011). The 129 

detailed demographic data is presented in the Supplementary Table 2. Comparison of the relapsing-130 

remitting MS (RRMS) and progressive MS (PMS) patients in terms of atrophy and qMRI maps values 131 

within the different tissue classes is presented in the Supplementary Table 3. DS1 was used for all the 132 

exploratory analyses, including feature selection and model parameter tuning. Before the feature 133 

selection and subsequent steps, DS1 was randomly split into training and testing sets (80 %/20 %), 134 

attempting to maintain distributions of outcome, age, sex, and scanner variables. 135 

Dataset 2 (DS2) is the Calgary-Campinas-359 dataset – an open, multi-vendor, multi-field- strength 136 

brain MRI dataset (Souza et al., 2018). It is composed of volumetric T1w images of 359 presumed 137 

healthy adults, scanned between 2009 and 2016. In the dataset description, there is no information 138 

about the neurological status assessment. 139 

Dataset 3 (DS3) is a subset of the MICCAI 2016 MS lesions segmentation (MSSEG) challenge dataset. 140 

The MSSEG challenge dataset contains MRI data for 53 MSP, but only 15 participants from the 141 

training subset are publicly available (Commowick et al., 2018; Cotton et al., 2015). The data were 142 

acquired no later than 2016 in three different sites in France on four different multi-field multi-vendor 143 

scanners with different sequences, including T1w and FLAIR. We used the unprocessed data from DS2 144 

to implement the same image pre-processing protocol for all the datasets. 145 

There are some differences between the DS1 and DSV, the main difference being the different image 146 

acquisition equipment and protocols (see Table 1). Other differences are the lack of information about 147 

how HCS and MSP status was assessed in DS2 and DS3, and the lack of MS stage of EDSS in DS3, 148 

making a comparison between DS1 and DS3 difficult. To minimize those differences and any potential 149 

bias, DS2 and DS3 were combined and filtered to match the age range and field strength present in 150 

DS1. Within the datasets, there were no incomplete data. 151 

A summary of the datasets is presented in Table 1. The p-values for comparison of age and sex 152 

distributions between HCS and MSP groups within development and validation data as well as between 153 

development and validation datasets can be found in Supplementary Table 4. 154 

2.3 MRI data pre-processing 155 

All the data processing and analysis hereafter was performed on a system containing 4x 10 core 2.40 156 

GHz Intel Xeon CPU and 64 GB RAM. 157 

The qMRI maps were generated in MATLAB 2017b (The MathWorks Inc., Natick, MA, USA) with 158 

the use of the hMRI toolbox v0.2.0 (Tabelow et al., 2019), an extension of SPM12 (URL: 159 

http://www.fil.ion.ucl.ac.uk/spm). In the absence of RF sensitivity bias maps acquisition, the 160 

radiofrequency field (RF) sensitivity bias was corrected with a unified segmentation approach. The 161 

radiofrequency transmit field (𝐵1
+) bias was corrected using B1 and B0 maps, which were acquired 162 

with 3D echo-planar imaging mapping protocols. The B1 data was processed with parameters, which 163 
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were identical to the standard default ones. The multiparameter input images included 6 MT-, 8 PD-, 164 

and 6 T1-weighted images.  165 

All images within DS1 were reconstructed with a resolution of 1×1×1 mm3, hence we decided to 166 

resample the scans within DS2 and DS3 to the same resolution. We used cubic spline interpolation as 167 

it performs well in terms of its Fourier properties, visual image quality, and interpolation errors 168 

(Lehmann, Gonner, & Spitzer, 1999). 169 

Following this step, tissue masks for cerebrospinal fluid (CSF), GM, NAWM, and lesions within DS1 170 

were estimated. Tissue segmentation in HCS was performed with a multi-channel unified segmentation 171 

protocol (Ashburner & Friston, 2005), using multiple qMRI maps (PD, MT, R2*, R1). It was 172 

performed in MATLAB using hMRI for SPM12 with light regularisation (regularisation coefficient 173 

0.001) and 60 mm cut-off for full width at half maximum (FWHM) of Gaussian smoothness of bias. 174 

The outputs were tissue probability maps for CSF, GM, and WM, with the voxel values between 0 175 

(background) and 1 (corresponding brain tissue). In order to ensure the inclusion of only the relevant 176 

tissue class, binary masks for each tissue were obtained by thresholding the tissue probability maps at 177 

a high level of 0.9. For MSP, lesion masks were generated from the combination of T1w and FLAIR 178 

images with LST (Schmidt et al., 2012, URL: https://www.applied-statistics.de/lst.html) for SPM12 179 

by the lesion growth algorithm (LGA) and corrected manually by a qualified MS specialist (ELo) when 180 

necessary. Multi-channel tissue segmentation was performed using multiple qMRI maps (PD, MT, 181 

R2*, R1) with unified segmentation protocol in US-with-Lesion (Phillips & Pernet, 2017, URL:  182 

https://github.com/CyclotronResearchCentre/USwLesion), adding an extra lesion tissue class. In DSV, 183 

brain tissue segmentation was performed with a single channel (T1w) unified segmentation protocol 184 

in MATLAB with SPM12, using T1w images. 185 

After segmentation, the total intracranial volume (TIV) was estimated for each patient as the 186 

morphological sum of the CSF, GM, NAWM, and lesion volumes (where applicable). This combined 187 

ROI was used for intensity normalization, as described below.  188 

As the magnetic field inside an MRI scanner is not ideally homogeneous and is affected by objects 189 

within it, a bias field signal is introduced, degrading image quality as a smooth, low-frequency signal 190 

that distorts segmentation results and feature values. To partially correct for this in T1w images, N4 191 

bias field correction (Tustison et al., 2010) was performed in TIV.   192 

As cMRI voxel intensities are expressed in arbitrary units, the Image Biomarker Standardisation 193 

Initiative (IBSI) recommends using normalization for raw MR data (Zwanenburg, Leger, Vallières, & 194 

Löck, 2016). Therefore, within each T1w scan, the intensities were normalized to arrive at a mean of 195 

0 and a standard deviation of 1. Normalization was performed within the TIV, considering only TIV 196 

intensities.  197 

2.4 Radiomic feature extraction and exploration 198 

Radiomic features that quantitatively characterize the ROI, e.g., intensity histogram, simple statistics, 199 

and texture (Lambin et al., 2012; Rizzo et al., 2018), were extracted from pre-processed cMRI and 200 

qMRI data using PyRadiomics 2.2.0 (van Griethuysen et al., 2017) in python v. 3.7.1. Due to their 201 

small volumes, features from lesion ROIs were not extracted, and they were used only as an additional 202 

tissue class for brain segmentation. Radiomic features of the following classes were extracted from the 203 

original images: FO statistics, Grey Level Co-occurrence Matrix (GLCM) (Haralick, Shanmugam, & 204 

Dinstein, 1973), Grey Level Run Length Matrix (GLRLM) (Galloway, 1975), Grey Level Size Zone 205 
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Matrix (GLSZM) (Thibault et al., 2013), Neighbouring Grey Tone Difference Matrix (NGTDM) 206 

(Amadasun & King, 1989), Grey Level Dependence Matrix (GLDM) (Sun & Wee, 1983). The full list 207 

of the extracted features can be found in the Supplementary Table 5. Contrary to oncological radiomic 208 

studies, where shape features are usually involved (Lambin et al., 2012; Philippe Lambin et al., 2017; 209 

Rizzo et al., 2018), here only first-order and texture features were considered. Many neurodegenerative 210 

disorders have reported volumetric brain changes, showing disease-specific patterns in brain 211 

substructures (Jakimovski et al., 2020), which were not delineated in the present study. Moreover, WM 212 

volumetric atrophy changes are mostly explained with the presence of lesions (Marciniewicz, 213 

Podgorski, Sasiadek, & Bladowska, 2019), which also influence first-order and texture features. 214 

Therefore, to further reduce the ratio of the number of features versus the number of samples, shape 215 

features were excluded. Before grey-level texture matrices were calculated, intensities discretization 216 

was performed with a fixed number of bins 𝑁𝑏𝑖𝑛𝑠 = 50, in line with IBSI recommendations 217 

(Zwanenburg et al., 2016). The fixed bin number approach groups voxel intensities before 218 

discretization, which additionally harmonizes multi-scanner multi-vendor multi-site data.  219 

No feature harmonization methods, such as ComBat (Johnson, Li, & Rabinovic, 2007), were applied 220 

across the different datasets because of the small sample sizes and considerable heterogeneity of 221 

scanners and protocols. To speed up feature extraction, the ROI was pre-cropped into a bounding box 222 

with 5-voxel-width padding. A separate feature set was calculated for each ROI and image type. An 223 

overview of feature sets is presented in Table 2. 224 

Feature analysis was performed in the whole DS1 to describe the data, its results were not included 225 

into model building. Statistical tests were performed to gauge diagnostic efficacy in such a small 226 

dataset. A univariate Mann-Whitney test was carried out using Bonferroni correction and 𝑝 ≤ 0.01 for 227 

two-sided hypothesis was considered statistically significant. Point-biserial correlation coefficients 𝑟𝑝𝑏 228 

and p-values were calculated between radiomic feature values and MS status; a correlation was 229 

considered statistically significant if |𝑟𝑝𝑏| ≥ 0.85 and 𝑝 ≤ 0.05. Spearman correlations between the 230 

features, and age and the feature ROI volume were computed to gauge the added value of radiomic 231 

features compared to age and volumetry, with a |𝑟𝑆| > 0.85 considered highly correlated for each test. 232 

Additionally, the univariate area under the receiver operating characteristic curve (AUC) was 233 

calculated for each feature. 234 

2.5 Radiomic feature selection 235 

In order to remove redundant and non-informative features, feature reduction and selection were 236 

performed on DS1, using the MS status as the binary outcome where applicable. Feature selection was 237 

independently carried out for the T1w, PD, MT, R1, and R2* maps to arrive at a subset of N features 238 

each, attempting to adhere to published rules of thumb to estimate the optimal number (Hua, Xiong, 239 

Lowey, Suh, & Dougherty, 2005; Abu-Mostafa, Magdon-Ismail, & Lin, 2012). We chose the following 240 

approach to estimate the number of features 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠=𝑖𝑛𝑡 
𝑁𝑆

10
, as outlined in (Abu-Mostafa et al., 241 

2012), where 𝑁𝑆 is the number of samples in the minor class. 242 

Since DS1 is relatively small, especially after the train/test split, feature selection as described below 243 

was performed 100 times on an extended and balanced subset of 100 participants created by randomly 244 

sampling (with replacement) observations from the training set. In each of the 100 iterations, a fixed 245 

number N of the highest-ranking features was retained, and at the end, features were ranked according 246 

to how often they were selected. 247 
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The feature selection pipeline starts with excluding features with a zero or low variance. A feature was 248 

considered of low variance if the percentage of its distinct values out of the number of observations 249 

was less than 10%, and the ratio of its most frequent values was more than 95/5. Next, features with 250 

high inter-correlation were excluded by calculating the pairwise Spearman correlation between all the 251 

features. From each pair of highly correlated features (|rS|>0.85), we excluded a feature having the 252 

highest correlation on average with all the remaining features. The final selection was performed with 253 

recursive feature elimination (Guyon, Weston, Barnhill, & Vapnik, 2002) using random forest 254 

classifier (Breiman, 2001) models (100 trees, as recommended by Oshiro, Perez, & Baranauskas, 2012; 255 

a number of features to consider when looking for the best split 𝑖𝑛𝑡(√𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), where √𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  256 

is changing during recursive feature elimination iterations, as recommended by Hastie, Tibshirani, & 257 

Friedman, 2009). Random forest (RF) classifiers allow for robust variable importance computation and 258 

do not need normalization. Moreover, the number of available features exceeds the number of samples, 259 

and a random forest classifier is still able to deal with such data.  For each selected feature a distribution 260 

map was generated by calculating the feature value within each 26-connected neighbourhood of each 261 

voxel within the image ROIs. 262 

2.6 Model training and testing 263 

Models were trained and tested on independent sets of DS1. Observations from the training and testing 264 

sets were randomly sampled with a replacement for 100 times, resulting in the creation of extended 265 

and balanced training and testing subsets of 100 participants each.  266 

Separate binary classification models were trained on DS1 for different image types: T1w, PD, MT, 267 

R1, R2*, and for a combination of features from PD + MT + R1+ R2* (composed qMRI) to investigate 268 

the value of each image type and ROI in the estimation of the MS status. For each image type three 269 

binary classification models were trained using the same features from each image type and ROI: (i) 270 

random forest (RF), (ii) support vector machine (SVM) (Platt, 1999), (iii) logistic regression (LR). For 271 

the RF model, the same settings as for the recursive feature elimination were used; for SVM, a radial 272 

basis function kernel was used with regularization parameter C=1.0, kernel coefficient 𝛾 =273 

1/(𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∙ 𝑉𝑎𝑟(𝑋)), where 𝑉𝑎𝑟(𝑋) is the variance of the input features X (since we did not have 274 

any a priori expert knowledge about the classification problem and did not perform any empirical 275 

validation of model parameters, these are the default parameters for the SVM, keeping a balance 276 

between classification accuracy and tolerance to misclassification errors); and for LR, L2 penalty was 277 

used, since this regularisation does not lead to high values among the regression coefficients, with dual 278 

formulation, as recommended when the amount of observations exceeds the amount of features, and a 279 

liblinear solver, which is recommended for small datasets; inverse of regularization strength C=1.0, 280 

which is the optimal in terms of balance between accuracy and model complexity. Again, due to the 281 

small dataset sizes, DS1 was used as an exploratory dataset.  282 

The models’ performances were estimated in terms of the following metrics: sensitivity, specificity, 283 

and AUC, with the corresponding 90% confidence intervals (CI); for each model, learning and curves 284 

were plotted. Since all the scores were estimated on the data subsets, containing equal numbers of HCS 285 

and MSP, the imbalanced data correction was not needed. The best model was selected based on these 286 

performance metrics for different ROIs and tissue types, giving the AUC score more weight, excluding 287 

models with the median AUC scores below the threshold of 0.7, which is considered an 288 

underperforming classification model. In order to select the best model type (RF, SVM, or LR) the 289 

number of highest AUC scores was used. 290 
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The final models with the original coefficients were subsequently validated on DS2 and DS3. As the 291 

combined dataset containing DS2 and DS3 was highly unbalanced regarding the outcome, random 292 

sampling (with replacement) was implemented. Therefore, the models were validated on 100 balanced 293 

subsets, containing 10 random observations from DS2 as well as 10 random observations from DS3.  294 

The models for qMRI were not validated externally due to the unavailability of similar datasets. 295 

To examine the models and methodology for overfitting, a permutation test was performed on DS1. 296 

The class labels in both training and testing sets were randomized, maintaining the same distributions 297 

as in original sets. Without modifying the pipeline, feature selection was performed, models were 298 

trained and tested, and performance metrics were calculated to ascertain whether the pipeline detects 299 

patterns in randomly generated outcomes. 300 

3 Results 301 

3.1 Data description and MRI data pre-processing 302 

Participants were drawn from DS2, aiming to match DS1 regarding age and magnetic field strength. 303 

Participants with MRI quality, which was not sufficient for robust automatic segmentation, were 304 

excluded after a visual check (ELa). Finally, 167 participants were selected from this dataset. Another 305 

ten participants were selected from DS3, again trying to match age and field strength distributions with 306 

those of DS1. An overview of the resulting feature sets is presented in Table 3. Details of participants’ 307 

distribution between the train and test sets of DS1 and significance results for comparison of age and 308 

sex distributions in the train and test sets can be found in the Supplementary Table 6. 309 

3.2 Radiomic feature extraction and description  310 

For each T1w and qMRI image and ROI combination, 93 features were extracted, resulting in 1395 311 

features per participant. The Mann-Whitney test revealed that 16 % of features (220 features out of 312 

1395) were sampled from significantly different distributions in the HCS and MSP cohorts, mostly 313 

originating from WM in all image types but also from NAWM in MT and R2*. In the entire feature 314 

set, there was only one feature (R1 first-order minimum in WM) highly correlated with the outcome, 315 

no feature highly correlated with age, and 10 features out of 1395 highly correlated with ROI volume. 316 

Univariate analysis showed that 28 % of features (395 features out of 1395) had a ROC AUC score 317 

>0.75, most of which were obtained from the PD, MT, and R2* maps (see Table 4). 318 

3.3 Radiomic feature selection 319 

In the training set of DS1, on average among all the image types and ROIs, 7 % from the initial feature 320 

set were excluded by the low variance step, followed by 79 % exclusion by the high correlation step. 321 

The number of features per set kept after each feature selection step is available in the Supplementary 322 

Table 7. The RF-based recursive feature elimination using data sampling with replacement yielded the 323 

final feature vectors for each ROI and MRI image type. To make the models easier to compare across 324 

ROI and MRI image types, the 3 (𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠= 
𝑁𝑆

10
=  

28

10 ~ 3
) top ranking features were left in each final 325 

feature vector. The list of the selected features can be found in the Supplementary Table 8.  326 

No high correlations were discovered between the selected features, age, and the ROI volume. For the 327 

selected features the univariate AUC was below a threshold of 0.7 for PD, MT, and R2* in NAWM 328 

and T1w, and PD in GM. A list of the selected features with their univariate ROC AUC scores is 329 

presented in Figure 4. Spearman correlation coefficients with age and ROI volume are presented in 330 

Supplementary Figure 1. 331 
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In the qMRI analysis, the measurements for each participant are calculated as median values of qMRI 332 

parameters within voxels of each tissue class. Therefore, traditional quantitative values of the qMRI 333 

maps are special cases of the radiomic features. These values were not selected by the applied feature 334 

selection method on training set of DS1. Univariate ROC AUC scores and Spearman correlation 335 

coefficients with the selected features from the same ROI and image type are presented in the 336 

Supplementary Table 9. 337 

Some of the radiomic features, primarily representing first-order statistics, are self-explanatory. At the 338 

same time, texture features are not very interpretable. For the better interpretability, for the best features 339 

in each ROI and image type, the saliency maps were obtained by calculation of the feature value in the 340 

neighborhood of each voxel. The examples of the normalized saliency maps are presented on Figure 341 

5. Even though all the voxels from the ROI contribute to the radiomic feature value, saliency maps can 342 

show which areas of the ROI increase or decrease the total value. For example, for R1 first-order 10-343 

Percentile, the total feature value is highly increased by the voxels in the center of the ROI, whereas 344 

saliency map (I) values at the border with the GM are relatively low, because this feature represents a 345 

statistical characteristic of the intensity distribution. R2* GLDM Low Gray Level Emphasis in GM is 346 

a texture feature, defined by the spatial combinations of the voxels with specific intensities, so its map 347 

(O) has no evident spatial clustering of the values. 348 

3.4 Models training and testing 349 

According to the Delong test with use of the Bonferroni correction, different ML models had 350 

significantly different (𝑝 ≤ 0.01) AUC scores in all the cases, with the exception of MT and 351 

qMRIcomb in WM, R1 in NAWM, and PD in GM (p-values for AUC comparison can be found in the 352 

Supplementary Table 10, performance metrics in the Supplementary Table 11). Among all the ROI 353 

and image types, in most cases, the median values of the RF classifier performance scores dropped 354 

below a threshold of 0.7. Having the highest number of top AUC values, the LR model was selected. 355 

Results from the LR model will be shown in the main body of the text, while the regression coefficients 356 

for the final models are shown in the Table 12. Performance metrics are presented in Table 5. 357 

Models using features extracted from WM achieved the best classification performance with the best 358 

performance achieved by the MT data. There were no statistical differences (𝑝 ≤ 0.01) in AUC scores 359 

obtained for WM in MT, R1, and qMRIcomb (p-values for AUC comparison can be found in the 360 

Supplementary Table 13). The highest median performance across all metrics was achieved with the 361 

MT model, all of which yielded a value of 1.00. The T1w model performed generally lower than MT 362 

and combined qMRI models, but outperformed the PD model in median specificity, the R1 model in 363 

median sensitivity, and the R2* model in median AUC.  364 

In NAWM there were no significant differences in AUC scores obtained for R2* and qMRIcomb 365 

models. The highest overall performance was achieved with the R1 model. The PD model yielded a 366 

median specificity of 0.00 (no true negatives were achieved). The T1w model performed generally 367 

poorer than the MT and R1 models, but better than the PD, R2*, and qMRIcomb models.  368 

In GM there were no significant differences in AUC scores obtained for MT and R1, and R2* and 369 

qMRIcomb. The highest overall performance was achieved with the MT-based model, which yielded 370 

median AUC of 0.88.  371 

The permutation test results showed a significant (𝑝 ≤ 0.01) drop in AUC for all the models, except 372 

for PD and R2* in WM and NAWM, and T1w in GM. The full results obtained with the permutation 373 
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test for different models and permutation test p-values can be found in the Supplementary Table 14 374 

and Supplementary Table 15, correspondingly. 375 

Classification performance metrics for T1w models using the WM, NAWM, and GM validated on the 376 

external DSV are presented in Table 6.  377 

The actual clinical models always contain demographic and clinical information. Nevertheless, within 378 

this study, the clear utility of the imaging features was investigated. Univariate ROC AUC scores for 379 

the demographic and clinical variables, such as age, brain parenchymal fraction, GM fraction, WM 380 

fraction, Z-scores for the motor and cognitive tests are presented in Supplementary Table 16. 381 

3.5 TRIPOD statement and Radiomics quality assurance 382 

This study was evaluated with the “Radiomics Quality Score” – RQS (Philippe Lambin et al., 2017), 383 

which yielded a final result of 39%. Likewise, we evaluated it with the “Transparent reporting of a 384 

multivariable prediction model for individual prognosis or diagnosis” – TRIPOD (Collins, Reitsma, 385 

Altman, & Moons, 2015) checklist score, which was in a range of 0.71-0.77. The RQS and TRIPOD 386 

checklists are presented in the Supplementary Table 17 and 18. 387 

4 Discussion 388 

In this exploratory brain tissue MRI and qMRI radiomics study based on a unique dataset, we report 389 

on several hypothesis-generating findings for HCS vs. MSP classification. We aimed to investigate the 390 

diagnostic utility of the new MRI image types promising in the cross-center studies. Previous studies 391 

on radiomics in MS were focused on T2w cMRI data and aimed to distinguish between MS and 392 

neuromyelitis optica spectrum disorder (Y. Liu et al., 2019; Ma et al., 2019) without external 393 

validation, hence the importance of this work. 394 

While focal WM lesions are the visible part to the disease on cMRI, it was reported that diffuse MS-395 

related pathological changes might appear in normal appearing brain tissue. These changes are partly 396 

independent from focal lesions and are detected in the earlier stage of the disease although they 397 

predominate in the late phase of the disease especially in the progressive phenotype (Lassmann, 2018). 398 

Therefore, to investigate the sensitivity of the radiomic features to the diffuse changes, an analysis of 399 

NAWM and GM was performed. Because our MS cohort include both RRMS and PMS patients with 400 

a rather long disease duration, their radiomic features in NAWM might differ from those in early MS 401 

patients. Nevertheless, we believe our results justify further studies involving early MS cases. 402 

Of the three machine learning models (RFC, SVM, and LR) tested, LR was the most stable with median 403 

AUC, sensitivity, and specificity, all exceeding a value of 0.7 while achieving the highest performance 404 

in AUC. LR outperforming the other models could be due to the small number of observations, where 405 

the simplest models might perform best since they are less likely to overfit. The selected radiomic 406 

features were not correlated with age and volume, which indicates that radiomics could provide 407 

additional information to those simple variables. 408 

The best LR model performance concerning tissue type was achieved using features extracted from 409 

WM. This was expected since focal WM lesions (plaques) in MSP’s WM affect the intensities 410 

distribution (Trip & Miller, 2005). In NAWM classification, which is more challenging, good 411 

classification is achieved not only with MT and R1 maps but also with T1w data. This result was not 412 

expected since this MRI sequence is not sensitive to pathological NAWM changes, as reported in (Trip 413 

& Miller, 2005; Reitz et al., 2017). These observations are explained by the fact that qMRI voxel values 414 
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have physical meaning, reflecting the water and myelin contents (Nikolaus Weiskopf et al., 2013). 415 

Furthermore, the qMRI map generation pipeline contains image co-registration and B0 and B1 fields 416 

correction steps, leading to interpolation and, therefore, smoothing of the qMRI map. Moreover, T1w 417 

images have a higher spatial resolution, leading to more detailed texture analysis. In GM, the T1w-418 

based model underperforms, as it was expected, according to previous publications (Trip & Miller, 419 

2005; Reitz et al., 2017). 420 

Amongst the image types, the best performance was achieved with MT maps, which parameter strongly 421 

correlates with histologically measured myelin content (Schmierer, Scaravilli, Altmann, Barker, & 422 

Miller, 2004). This corroborates the findings of Lommers et al., 2019, where statistical tests showed 423 

the considerable differences between HCS and MSP. In WM, the MT model demonstrated a median 424 

AUC, sensitivity, and specificity of 1.00, which means that all the testing observations were classified 425 

correctly. As far as testing observations did not enter model training, we can conclude that in our 426 

relatively small dataset, focal WM lesions (plaques) presence makes the selected MT features 427 

distinctive from the ones extracted from the healthy brain. PD maps showed the most inferior 428 

performance, with at least one of the performance metrics crossing below a value of 0.7 in each tissue 429 

type. This could be due to the potential residual T2* weighting, as mentioned previously (Lommers et 430 

al., 2019). The results obtained with T1w and R1 data were significantly different, although both these 431 

image types represent longitudinal relaxation. The main difference between them is that T1w 432 

demonstrates the relative level of longitudinal relaxation at some moment, expressed in arbitrary units. 433 

In contrast, the R1 map represents the actual physical property of the tissue and is expressed in 434 

standardized physical units (Hz). Furthermore and as already discussed, reconstruction of the qMRI 435 

images, unlike for T1w data, is always performed with the correction of instrumental biases and receive 436 

fields (Tabelow et al., 2019). 437 

Although the T1w models are non-quantitative, they outperformed some of the qMRI models in WM 438 

and NAWM, yet had the poorest performance in GM. Among all the T1w models, the WM model 439 

yielded the highest median AUC of 0.74 on the testing set of the development dataset. On the external 440 

validation, T1w-based models all showed poor performance. Nevertheless, among these models, the 441 

best performance was achieved in WM, mainly due to focal WM lesions, which are easily captured in 442 

the radiomic analysis. In NAWM and GM, the differences between HCS and MSP are presented on 443 

the microstructural level. The T1w data is expressed in arbitrary units, and it is not consistent enough 444 

to detect these changes within different scanners and centers. As the T1w-based model in GM 445 

underperformed on the testing data, a good performance on the validation dataset was not expected. 446 

Thus, even though T1w data can perform well on the development dataset, its application is challenging 447 

for multi-centric studies. The explanation can be due to differences in imaging data, lack of sensitivity 448 

of T1w contrast for these applications, low predictive ability of the corresponding features, and their 449 

susceptibility to data effects.  Additionally, we suspect a bias that can be introduced by the clinical 450 

differences in DS1, DS2, and DS3. Whereas MS status assessment details, EDSS, and MS stage are 451 

known for DS1, there is no such information about the participants from DS3, and there is no 452 

information about the tests carried out for DS2 participants to determine them as HCS. 453 

Strengths of the current study include the use of the unique quantitative and reproducible imaging data, 454 

the use of an external validation open-source data, and in-depth investigation of the features in 455 

traditionally challenging tissues such as NAWM and GM, which can have potential in early MS 456 

diagnosis. 457 
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This study has some limitations too. The first stems from the small number of observations in the DS1. 458 

Consequently, for external validation, we excluded participants, which did not correspond to 459 

participants from DS1 in terms of age or MRI magnetic field strength. Also, all participants with 460 

insufficient MRI data quality rendering it unsuitable for robust automatic brain tissue segmentation 461 

were excluded, introducing more bias.  Another limitation is related to the uniqueness of qMRI data, 462 

meaning there are no available similar qMRI brain datasets for external validation, especially for MSP. 463 

However, it was reported that qMRI is reproducible between different scanner models, and multi-center 464 

studies can be expected (R.-M. Gracien et al., 2020). The third limitation is the absence of data 465 

harmonization performed across datasets involved in this study. It results in non-uniformity of non-466 

quantitative MRI data between datasets and thus leading to model performance degradation.  The 467 

following limitation is related to the analysis of only HCS and MSP data. Although the exploratory 468 

analysis of the features demonstrated that some had very high univariate AUC scores (> 0.99), 469 

considering the absence of data for other neurodegenerative diseases and relatively small amount of 470 

observations, specification of the MS radiomic signature is needed. Thus, analysis of other 471 

neurodegenerative disorders is needed to distinguish between different diagnoses. The fifth limitation 472 

is related to the cohort of the patients in DS1. Our aim was to achieve MS diagnosis at an earlier time 473 

point, but we used the data from both RRMS and PMS patients with a rather long disease duration. 474 

Nevertheless, RRMS and PMS patients did not significantly differ from each other but PMS patients 475 

tend to have more pronounced alterations in NAWM as well as more tissue loss. The next limitation 476 

pertains to the cMRI sequence analyzed in this study: even though focal WM lesions are noticeable on 477 

T1w, this image type is not the leading one in MS investigation. Among cMRI modalities, T2w, 478 

FLAIR, and contrast-enhanced T1w provide appropriate contrast. These modalities were not available 479 

for all the participants of DS1 (with qMRI acquisition): FLAIR scans were available for MSP only. 480 

Therefore, analysis of another cMRI and qMRI could be a subject of future research. Finally, different 481 

brain segmentation approaches were used for DS1 and external validation data. Even though the same 482 

method was implemented for all the MRIs, segmentation in DS1 was performed with qMRI data, 483 

segmentation for external validation was performed with cMRI data. It could affect the values of 484 

radiomic features, as cMRI-based segmentation leads to inaccurate delineation of deep GM regions 485 

(Nikolaus Weiskopf et al., 2013; Lommers et al., 2019). 486 

Within the present study, we used standard open source tools for data pre-processing and analysis. 487 

Thus, the diagnostic support workflow execution times obtained within this study are indicative. 488 

Moreover, they strongly depend on the used hardware, software, original medical image parameters, 489 

pre-processing and analysis settings, and radiomic features, composing the final signature. We did not 490 

implement any optimization of computational resources consumption; therefore, the obtained 491 

execution times represent the upper bound of a workflow duration. Within the present study, cMRI- 492 

and qMRI-based workflows took approximately 26 and 38 minutes per participant, excluding the image 493 

acquisition time. This difference is due to the relatively long time of qMRI maps reconstruction. This 494 

shows that cMRI workflow can be implemented into the brain scanning protocols as a screening for 495 

WM abnormalities. The qMRI workflow requires a particular scanning protocol (Nikolaus Weiskopf 496 

et al., 2013) and a relatively long analysis time. Therefore, it can be implemented for diagnostic support 497 

for patients with suspicious medical evidence. 498 

This study indicated the potential of cMRI and qMRI radiomics in MS-related biomarkers 499 

development. The novelty of this work is in the combination of the two MRI techniques and the attempt 500 

to overcome the challenge of arbitrary units in MRI we examined the utility of radiomics in qMRI. 501 

In differentiating between MSP and HCS, qMRI showed the advantage over cMRI in NAWM and GM 502 

regions. Therefore, the application of qMRI is promising in early MS diagnosis. We believe that qMRI 503 
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radiomic signatures can contribute to multi-center studies, as indicated in the previous works (Nikolaus 504 

Weiskopf et al., 2013; N. Weiskopf et al., 2015; Tabelow et al., 2019; Lommers et al., 2019). For this, 505 

the reproducibility of qMRI features is to be investigated in the future. T1w WM analysis could 506 

potentially be applied for a rapid check of cMRI for WM abnormalities. For research purposes, 7 T 507 

MRI is often applied to study NAWM and GM (Treaba et al., 2019; Zurawski et al., 2020), but it is not 508 

widely used in clinical practice. We believe that 7 T MRI radiomic analysis is a potential research field 509 

in MS diagnosis.   510 

Our next step is to validate those findings in a prospective qMRI study and test the hypothesis that 511 

those signatures are sensitive to neurodegenerative changes in early RRMS and have a diagnostic value 512 

for subjects at risk (e.g., clinically isolated syndrome). 513 

5 Conclusion 514 

This study demonstrates that brain cMRI and qMRI radiomic features have the potential to distinguish 515 

between MSP and HCS. In NAWM and GM analysis, having potential in early automated diagnosis, 516 

stable results are achieved with qMRI-based data. This is a proof of concept clinical study 517 

demonstrating a strong signal in brain imaging, but further research is needed to develop and approve 518 

radiomic signatures for MS.  519 

Nevertheless, future large-scale studies should evaluate the reproducibility and generalizability of the 520 

proposed method and create an MS-specific radiomic signature. Because of fully automated pipeline 521 

and imaging data quantification, the proposed approach shows its potential in relevance to timesaving 522 

and reproducibility in MS diagnosis. 523 
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 Table 1 – Datasets summary details (μ - average, σ - standard deviation, M – male, F - female) 759 

 Dataset 1 Dataset 2 Dataset 3 

Dataset Private CHU, Liege CC-359 
MICCAI 2016 MSSEG challenge 

(training subset) 

Participants 

MSP (15 relapsing-

remitting, 21 progressive), 

HCS (36) 

HCS (359) MSP (15) 

Age, μ±σ [years] 45.8 ± 12.1 52.7 ± 7.3 40.5 ± 10.8 

Sex, M/F 0.76 0.96 1.00 

Image types 
T1w, PD, MT, R1, R2*, 

FLAIR 
T1w T1w, FLAIR 

Sites 

CHU (Liege, Belgium); 

GIGA-CRC in vivo 

imaging, University of 

Liege (Liege, Belgium) 

Campinas (Sao Paulo, 

Brazil); Calgary 

(Alberta, Canada) 

CHU Rennes (Rennes, France); 

CHU Lyon ( Lyon, France) 

Equipment 

3 T Siemens Magnetom 

Allegra (37); 

3 T Siemens Magnetom 

Prisma (35) 

3 T and 1.5 T Siemens 

(120), Philips (119), GE 

Healthcare (120) MRI 

scanners 

3 T Siemens Magnetom Verio (5); 

1.5 T Siemens Magnetom Aera (5); 

3 T Philips Ingenia (5) 

Protocol 
MRI protocol with FLASH 

sequences 

3D MP-RAGE (Philips, 

Siemens), comparable 

3D T1w spoiled gradient 

echo sequence (GE 

Healthcare) 

Sagittal 3D FLAIR, sagittal 3D 

T1w 

Matrix 256×224 

224×224 

240×240 

256×256 

256×256 (Siemens) 

336×336 (Philips) 

Slices 176 164 - 224 
176 (Siemens) 

200 (Philips) 

Voxel resolution [mm3] 1×1×1 1×1×1 (Siemens) 

1.08×1.08×0.9 (1.5 T Siemens) 

1×1×1 (3 T Siemens) 

0.74×0.74×0.85 (Philips) 

Table 2 – Overview of independent features sets per participant 760 

 761 
ROI Image type 

WM (for MSP, NAWM + focal WM lesions) 

NAWM  

GM 

cMRI T1w 

qMRI PD 

MT 

R1 

R2* 
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In total, 3 ROIs In total, 5 image types 

Table 3 – Datasets summary details for included participants (μ - average, σ - standard deviation, M – 762 

male, F - female) 763 

 Dataset 1 Dataset 2 Dataset 3 

Participants 
MSP (15 relapsing-remitting, 21 

progressive), HCS (36) 
HCS (167) MSP (10) 

Equipment 

3 T Siemens Magnetom Allegra 

(37); 

3 T Siemens Magnetom Prisma 

(35) 

3 T Siemens (53), Philips 

(54), GE Healthcare (60) 

MRI scanners 

3 T Siemens Magnetom 

Verio (5); 

3 T Philips Ingenia (5) 

Age, μ±σ [years] 45.8 ± 12.1 52.7 ± 7.3 40.5 ± 10.8 

     Sex, M/F 0.76 0.96 1.00 

Table 4 – Number of features out of 1395 with age, volume, and outcome correlations having an |rS| > 764 

0.85, as well as univariate  AUC > 0.75 and corrected pMann-Whitney < 0.01  765 

 ROI T1w PD MT R1 R2* 

|𝒓𝑺
𝒂𝒈𝒆

| > 𝟎. 𝟖𝟓 

WM 0 0 0 0 0 

NAWM 0 0 0 0 0 

GM 0 0 0 0 0 

|𝒓𝑺
𝒗𝒐𝒍𝒖𝒎𝒆| > 𝟎. 𝟖𝟓 

WM 0 3 1 1 0 

NAWM 0 3 1 1 0 

GM 0 0 0 0 0 

|𝒓𝒑𝒃
𝒐𝒖𝒕𝒄𝒐𝒎𝒆| > 𝟎. 𝟖𝟓 

WM 0 0 0 1 0 

NAWM 0 0 0 0 0 

GM 0 0 0 0 0 

𝑨𝑼𝑪𝒖𝒏𝒊𝒗𝒂𝒓 > 𝟎. 𝟕𝟓 

WM 13 62 21 45 52 

NAWM 8 28 57 9 37 

GM 3 7 26 5 22 

𝒑𝑴𝒂𝒏𝒏−𝑾𝒉𝒊𝒕𝒏𝒆𝒚
𝑩𝒐𝒏𝒇𝒆𝒓𝒓𝒐𝒏𝒊

< 𝟎. 𝟎𝟏 

WM 9 41 10 37 7 

NAWM 0 12 42 5 26 

GM 1 0 18 2 10 

Table 5 – LR model performances on testing data showing the median (90% CI) for each image and 766 

tissue type (ROI) (median values above 0.7 for all the performance metrics for the same model are 767 

highlighted with bold font) 768 

ROI Image AUC Sensitivity Specificity 

WM 

T1w 0.74 (0.66, 0.82) 0.76 (0.67, 0.86) 0.72 (0.59, 0.82) 

PD 0.64 (0.58, 0.71) 1.00 (1.00, 1.00) 0.28 (0.17, 0.42) 

MT 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 

R1 0.82 (0.76, 0.88) 0.64 (0.52, 0.75) 1.00 (1.00, 1.00) 

R2* 0.73 (0.63, 0.83) 0.76 (0.62, 0.86) 0.72 (0.58, 0.84) 

qMRIcomb 0.93 (0.88, 0.97) 1.00 (1.00, 1.00) 0.86 (0.77, 0.94) 

NAWM 

T1w 0.73 (0.66, 0.82) 0.76 (0.64, 0.87) 0.70 (0.59, 0.81) 

PD 0.37 (0.30, 0.44) 0.74 (0.60, 0.87) 0.00 (0.00, 0.00) 

MT 0.81 (0.74, 0.89) 0.76 (0.64, 0.87) 0.86 (0.77, 0.94) 

R1 0.87 (0.80, 0.93) 0.88 (0.77, 0.98) 0.86 (0.77, 0.94) 

R2* 0.66 (0.56, 0.76) 0.76 (0.64, 0.87) 0.56 (0.40, 0.72) 

qMRIcomb 0.74 (0.67, 0.81) 0.62 (0.48, 0.77) 0.86 (0.77, 0.94) 

GM 

T1w 0.41 (0.32, 0.52) 0.26 (0.16, 0.40) 0.56 (0.43, 0.71) 

PD 0.69 (0.61, 0.79) 0.51 (0.38, 0.66) 0.86 (0.77, 0.94) 

MT 0.88 (0.82, 0.94) 0.76 (0.64, 0.87) 1.00 (1.00, 1.00) 

R1 0.82 (0.75, 0.87) 0.64 (0.50, 0.74) 1.00 (1.00, 1.00) 

R2* 0.73 (0.65, 0.83) 0.76 (0.64, 0.87) 0.71 (0.58, 0.84) 

qMRIcomb 0.81 (0.73, 0.88) 0.76 (0.64, 0.87) 0.84 (0.77, 0.95) 

Table 6 – LR model performances on external validation DSV showing the median (90% CI) for each 769 

tissue type for T1w images 770 
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ROI AUC Sensitivity Specificity 

WM 0.65 (0.55, 0.85) 0.30 (0.10, 0.70) 1.00 (0.90, 1.00) 

NAWM 0.60 (0.55, 0.95) 0.20 (0.10, 1.00) 1.00 (0.90, 1.00) 

GM 0.45 (0.15, 0.45) 0.90 (0.10, 0.90) 0.00 (0.00, 0.30) 

Figure 1 – Radiomics pipeline: a) medical imaging and segmentation, b) feature extraction, c) feature 771 

selection, d) modelling. 772 

Figure 2 – Study design. 773 

Figure 3 – Example of MRI data presented in DS1: T1w is a clinical MRI, expressed in arbitrary units; 774 

PD is linked to free water proportion, expressed in percentage; MT is linked to axonal myelination, 775 

expressed in percentage; R1 is linked to axonal myelination, expressed in Hz;  R2* is linked to axonal 776 

myelination and iron accumulation, expressed in Hz. 777 

Figure 4 – Univariate ROC AUC scores of the selected features (FO – first-order, LDHGLE – Large 778 

Dependence High Gray Level Emphasis, SDLGLE – Small Dependence Low Gray Level Emphasis, 779 

LAHGLE – Large Area High Gray Level Emphasis, MAD – Mean Absolute Deviation, LGLE – Low 780 

Gray Level Emphasis). 781 

Figure 5 – Normalized saliency maps for the best selected features for each ROI and image type 782 

highlight the areas with the highest feature values: (A) T1w GLCM Cluster Shade in WM, (B) PD first-783 

order Skewness in WM, (C) MT first-order Minimum in WM, (D) R1 first-order Kurtosis in WM, (E) 784 

R2* GLCM Cluster Shade in WM, (F) T1w GLCM Cluster Shade in NAWM, (G) PD GLDM Large 785 

Dependence High Gray Level Emphasis in NAWM, (H) MT GLDM Large Dependence High Gray 786 

Level Emphasis in NAWM, (I) R1 first-order 10-Percentile in NAWM, (J) R2* GLCM Imc2 in 787 

NAWM, (K) T1w first-order 10-Percentile in GM, (L) PD first-order 10-Percentile in GM, (M) MT 788 

GLDM Small Dependence Low Gray Level Emphasis in GM, (N) R1 first-order Minimum in GM, (O) 789 

R2* GLDM Low Gray Level Emphasis in GM; image resolution 1x1 mm2 790 
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