Positive Effect of Cognitive Reserve on Episodic Memory, Executive and Attentional Functions Taking Into Account Amyloid-Beta, Tau, and Apolipoprotein E Status
Narbutas, Justinas; Chylinski, Daphné; Van Egroo, Maximeet al.
2021 • In Frontiers in Aging Neuroscience, 13, p. 666181
cognitive performance; cognitive reserve; allostatic load; AD biomarkers; APOE; midlife
Abstract :
[en] Studies exploring the simultaneous influence of several physiological and environmental factors on domain-specific cognition in late middle-age remain scarce. Therefore, our objective was to determine the respective contribution of modifiable risk/protective factors (cognitive reserve and allostatic load) on specific cognitive domains (episodic memory, executive functions, and attention), taking into account non-modifiable factors [sex, age, and genetic risk for Alzheimer’s disease (AD)] and AD-related biomarker amount (amyloid-beta and tau/neuroinflammation) in a healthy late-middle-aged population. One hundred and one healthy participants (59.4 ± 5 years; 68 women) were evaluated for episodic memory, executive and attentional functioning via neuropsychological test battery. Cognitive reserve was determined by the National Adult Reading Test. The allostatic load consisted of measures of lipid metabolism and sympathetic nervous system functioning. The amyloid-beta level was assessed using positron emission tomography in all participants, whereas tau/neuroinflammation positron emission tomography scans and apolipoprotein E genotype were available for 58 participants. Higher cognitive reserve was the main correlate of better cognitive performance across all domains. Moreover, age was negatively associated with attentional functioning, whereas sex was a significant predictor for episodic memory, with women having better performance than men. Finally, our results did not show clear significant associations between performance over any cognitive domain and apolipoprotein E genotype and AD biomarkers. This suggests that domain-specific cognition in late healthy midlife is mainly determined by a combination of modifiable (cognitive reserve) and non-modifiable factors (sex and age) rather than by AD biomarkers and genetic risk for AD.
Research Center/Unit :
GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Disciplines :
Neurology Neurosciences & behavior Geriatrics
Author, co-author :
Narbutas, Justinas ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie
Chylinski, Daphné ; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Sleep and chronobiology
Van Egroo, Maxime; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Sleep and chronobiology
Bahri, Mohamed Ali ; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Aging & Memory
Koshmanova, Ekaterina ; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Sleep and chronobiology
Besson, Gabriel ; Université de Liège - ULiège > CRC In vivo Imaging-Aging & Memory
Muto, Vincenzo ; Université de Liège - ULiège > GIGA CRC In vivo Imaging
Schmidt, Christina ; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Sleep and chronobiology
Luxen, André ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
Balteau, Evelyne ; Université de Liège - ULiège > GIGA CRC In vivo Im. - Neuroimaging, data acquisi. & proces.
Phillips, Christophe ; Université de Liège - ULiège > GIGA CRC In vivo Im. - Neuroimaging, data acquisi. & proces.
MAQUET, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de neurologie
Salmon, Eric ; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalid. cogn.
Vandewalle, Gilles ; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Sleep and chronobiology
Bastin, Christine ; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Aging & Memory
Collette, Fabienne ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie
Positive Effect of Cognitive Reserve on Episodic Memory, Executive and Attentional Functions Taking Into Account Amyloid-Beta, Tau, and Apolipoprotein E Status
Cognitive Fitness in Aging study Fonds National de la Recherche Scientifique (FRS-FNRS, FRSM 3.4516.11, EOS Project MEMODYN No. 30446199; Belgium) Wallonia-Brussels Federation (Grant for Concerted Research Actions— SLEEPDEM) European Regional Development Fund (ERDF, Radiomed Project)
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWB - Fédération Wallonie-Bruxelles ULiège - Université de Liège Fondation Pierre et Simone Clerdent ERDF - European Regional Development Fund ERC - European Research Council
Funding text :
[18F]Flutemetamol doses were provided and cost covered by GE Healthcare Ltd. (Little Chalfont, United Kingdom) as part of an investigatorsponsored study (ISS290) agreement. The latter agreement had no influence on the protocol and results of the study reported here.
Andel R., Silverstein M., Kareholt I., (2014). The role of midlife occupational complexity and leisure activity in late-life cognition. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 70 314–321. 10.1093/geronb/gbu110 25190210
Ansiau D., Marquié J. C., Soubelet A., Ramos S., (2005). Relationships between cognitive characteristics of the job, age, and cognitive efficiency. Int. Congr. Ser. 1280 43–48. 10.1016/j.ics.2005.01.020
Aschenbrenner A. J., Gordon B. A., Benzinger T. L. S., Morris J. C., Hassenstab J. J., (2018). Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology 91 e859–e866.
Auton A., Abecasis G. R., Altshuler D. M., Durbin R. M., Bentley D. R., Chakravarti A., et al. (2015). A global reference for human genetic variation. Nature 526 68–74. 10.1038/nature15393 26432245
Baldivia B., Andrade V. M., Bueno O. F. A., (2008). Contribution of education, occupation and cognitively stimulating activities to the formation of cognitive reserve. Dement. Neuropsychol. 2 173–182. 10.1590/s1980-57642009dn20300003 29213567
Bastin C., Yakushev I., Bahri M. A., Fellgiebel A., Eustache F., Landeau B., et al. (2012). Cognitive reserve impacts on inter-individual variability in resting-state cerebral metabolism in normal aging. Neuroimage 63 713–722. 10.1016/j.neuroimage.2012.06.074 22796505
Battle M. R., Pillay L. C., Lowe V. J., Knopman D., Kemp B., Rowe C. C., et al. (2018). Centiloid scaling for quantification of brain amyloid with [18 F]flutemetamol using multiple processing methods. EJNMMI Res. 8:107.
Baumgart M., Snyder H. M., Carrillo M. C., Fazio S., Kim H., Johns H., (2015). Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimer’s Dement. 11 718–726. 10.1016/j.jalz.2015.05.016 26045020
Beason-Held L. L., Goh J. O., An Y., Kraut M. A., O’Brien R. J., Ferrucci L., et al. (2013). Changes in brain function occur years before the onset of cognitive impairment. J. Neurosci. 33 18008–18014. 10.1523/jneurosci.1402-13.2013 24227712
Beck A. T., Epstein N., Brown G., Steer R. A., (1988). An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 56 893–897. 10.1037/0022-006x.56.6.893 3204199
Beck A. T., Ward C. H., Mendelson M., Mock J., Erbaugh J., (1961). An inventory for measuring depression. Arch. Gen. Psychiatry 4 561–571. 10.1001/archpsyc.1961.01710120031004 13688369
Betthauser T. J., Koscik R. L., Jonaitis E. M., Allison S. L., Cody K. A., Erickson C. M., et al. (2019). Amyloid and tau imaging biomarkers explain cognitive decline from late middle-age. Brain A J. Neurol. 143 320–335. 10.1093/brain/awz378 31886494
Bhatti G. K., Reddy A. P., Reddy P. H., Bhatti J. S., (2020). Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front. Aging Neurosci. 11:369. 10.3389/fnagi.2019.00369 31998117
Booth T., Royle N. A., Corley J., Gow A. J., Valdés Hernández M. D. C., Muñoz Maniega S., et al. (2015). Association of allostatic load with brain structure and cognitive ability in later life. Neurobiol. Aging 36 1390–1399. 10.1016/j.neurobiolaging.2014.12.020 25659881
Bosma H., Van Boxtel M. P. J., Ponds R. W. H. M., Houx P. J., Burdorf A., Jolles J., (2003). Mental work demands protect against cognitive impairment: MAAS prospective cohort study. Exp. Aging Res. 29 33–45. 10.1080/03610730303710 12735080
Bowie C. R., Harvey P. D., (2006). Administration and interpretation of the trail making test. Nat. Protoc. 1 2277–2281. 10.1038/nprot.2006.390 17406468
Braak H., Braak E., (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82 239–259. 10.1007/bf00308809 1759558
Brickenkamp R., (1966). Test d2. Test D’attention Concentrée. Bruxelles: Editest.
Bright P., Hale E., Gooch V. J., Myhill T., van der Linde I., (2018). The National adult reading test: restandardisation against the Wechsler Adult Intelligence Scale-Fourth edition. Neuropsychol. Rehabil. 28 1019–1027. 10.1080/09602011.2016.1231121 27624393
Cabeza R., Albert M., Belleville S., Craik F. I. M., Duarte A., Grady C. L., et al. (2018). Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 19 701–710. 10.1038/s41583-018-0068-2 30305711
Cardebat D., Doyon B., Puel M., Goulet P., Joanette Y., (1990). [Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level]. Acta Neurol. Belg. 90 207–217.
Chiotis K., Stenkrona P., Almkvist O., Stepanov V., Ferreira D., Arakawa R., et al. (2018). Dual tracer tau PET imaging reveals different molecular targets for 11C-THK5351 and 11C-PBB3 in the Alzheimer brain. Eur. J. Nucl. Med. Mol. Imaging 45 1605–1617. 10.1007/s00259-018-4012-5 29752516
Clark L. R., Koscik R. L., Allison S. L., Berman S. E., Norton D., Carlsson C. M., et al. (2019). Hypertension and obesity moderate the relationship between β-amyloid and cognitive decline in midlife. Alzheimer’s Dement. 15 418–428. 10.1016/j.jalz.2018.09.008 30367828
Clark L. R., Racine A. M., Koscik R. L., Okonkwo O. C., Engelman C. D., Carlsson C. M., et al. (2016). Beta-amyloid and cognitive decline in late middle age: findings from the Wisconsin Registry for Alzheimer’s Prevention study. Alzheimer’s Dement. 12 805–814. 10.1016/j.jalz.2015.12.009 26806386
Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261 921–923. 10.1126/science.8346443 8346443
Coupé P., Manjón J. V., Lanuza E., Catheline G., (2019). Lifespan changes of the human brain in Alzheimer’s disease. Sci. Rep. 9 1–12.
Cunningham C., Campion S., Lunnon K., Murray C. L., Woods J. F. C., Deacon R. M. J., et al. (2009). Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol. Psychiatry 65 304–312. 10.1016/j.biopsych.2008.07.024 18801476
Dahle C. L., Jacobs B. S., Raz N., (2009). Aging, vascular risk and cognition: blood glucose, pulse pressure, and cognitive performance in healthy adults. Psychol. Aging 24 154–162. 10.1037/a0014283 19290746
De Frias C. M., Dixon R. A., (2014). Lifestyle engagement affects cognitive status differences and trajectories on executive functions in older adults. Arch. Clin. Neuropsychol. 29 16–25. 10.1093/arclin/act089 24323561
Debette S., Seshadri S., Beiser A., Au R., Himali J. J., Palumbo C., et al. (2011). Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 77 461–468. 10.1212/wnl.0b013e318227b227 21810696
Deckers K., Nooyens A., van Boxtel M., Verhey F., Verschuren M., Köhler S., (2018). Gender and educational differences in the association between lifestyle and cognitive decline over 10 years: the doetinchem cohort study. J. Alzheimer’s Dis. [Epub ahead of print].
Doherty B. M., Schultz S. A., Oh J. M., Koscik R. L., Dowling N. M., Barnhart T. E., et al. (2015). Amyloid burden, cortical thickness, and cognitive function in the wisconsin registry for Alzheimer’s prevention. Alzheimer’s Dement. Diagnosis Assess Dis. Monit. 1 160–169. 10.1016/j.dadm.2015.01.003 26161436
Dumurgier J., Hanseeuw B. J., Hatling F. B., Judge K. A., Schultz A. P., Chhatwal J. P., et al. (2017). Alzheimer’s disease biomarkers and future decline in cognitive normal older adults. J. Alzheimer’s Dis. 60 1451–1459. 10.3233/jad-170511 29036824
Eckert M. A., Keren N. I., Roberts D. R., Calhoun V. D., Harris K. C., (2010). Age-related changes in processing speed: unique contributions of cerebellar and prefrontal cortex. Front. Hum. Neurosci. 4:10. 10.3389/neuro.09.010.2010 20300463
Falck R. S., Best J. R., Davis J. C., Liu-Ambrose T., (2018). The independent associations of physical activity and sleep with cognitive function in older adults. J. Alzheimer’s Dis. 63 1469–1484. 10.3233/jad-170936 29782311
Farrell M. E., Chen X., Rundle M. M., Chan M. Y., Wig G. S., Park D. C., (2018). Regional amyloid accumulation and cognitive decline in initially amyloid-negative adults. Neurology 91 E1809–E1821.
Farrell M. E., Kennedy K. M., Rodrigue K. M., Wig G., Bischof G. N., Rieck J. R., et al. (2017). Association of longitudinal cognitive decline with amyloid burden in middle-aged and older adults: evidence for a dose-response relationship. JAMA Neurol. 74 830–838. 10.1001/jamaneurol.2017.0892 28558099
Ferreira D., Machado A., Molina Y., Nieto A., Correia R., Westman E., et al. (2017). Cognitive variability during middle-age: possible association with neurodegeneration and cognitive reserve. Front. Aging Neurosci. 9:188. 10.3389/fnagi.2017.00188 28649200
Folloni D., Sallet J., Khrapitchev A. A., Sibson N., Verhagen L., Mars R. B., (2019). Dichotomous organization of amygdala/temporal-prefrontal bundles in both humans and monkeys. eLife 8 1–23.
Fratiglioni L., Wang H.-X., (2007). Brain reserve hypothesis in dementia. J. Alzheimers Dis. 12 11–22. 10.3233/jad-2007-12103 17851191
Godbout J. P., Johnson R. W., (2009). Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol. Allergy Clin. N. Am. 29 321–337. 10.1016/j.iac.2009.02.007 19389585
Greenwood P. M., Espeseth T., Lin M. K., Reinvang I., Parasuraman R., (2014). Longitudinal change in working memory as a function of APOE genotype in midlife and old age. Scand. J. Psychol. 55 268–277. 10.1111/sjop.12123 24853824
Grober E., Hall C. B., Lipton R. B., Alan B., Resnick S. M., Kawas C., (2009). NIH public access. J. Int. Neuropsychol. Soc. 14 266–278.
Gupta A., Preis S. R., Beiser A., Devine S., Hankee L., Seshadri S., et al. (2015). Midlife cardiovascular risk impacts memory function: the framingham offspring study. Alzheimer Dis. Assoc. Disord. 29 117–123. 10.1097/wad.0000000000000059 25187219
Hanseeuw B. J., Betensky R. A., Jacobs H. I. L., Schultz A. P., Sepulcre J., Becker J. A., et al. (2019). Association of amyloid and tau with cognition in preclinical alzheimer disease: a longitudinal study. JAMA Neurol. 76 915–924.
Harada R., Ishiki A., Kai H., Sato N., Furukawa K., Furumoto S., et al. (2018). Correlations of 18F-THK5351 PET with postmortem burden of tau and astrogliosis in Alzheimer disease. J. Nucl. Med. 59 671–674. 10.2967/jnumed.117.197426 28864633
Hedden T., Oh H., Younger A. P., Patel T. A., (2013). Meta-analysis of amyloid-cognition relations in cognitively normal older adults. Neurology 80 1341–1348. 10.1212/wnl.0b013e31828ab35d 23547267
Heppner F. L., Ransohoff R. M., Becher B., (2015). Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16 358–372. 10.1038/nrn3880 25991443
Hoffman B., Schraw G., (2010). Conceptions of efficiency: applications in learning and problem solving. Educ. Psychol. 45 1–14. 10.1080/00461520903213618
Hohman T. J., Tommet D., Marks S., Contreras J., Jones R., Mungas D., (2017). Evaluating Alzheimer’s disease biomarkers as mediators of age-related cognitive decline. Neurobiol. Aging 58 120–128. 10.1016/j.neurobiolaging.2017.06.022 28732249
Hollands S., Lim Y. Y., Buckley R., Pietrzak R. H., Snyder P. J., Ames D., et al. (2015). Amyloid-β related memory decline is not associated with subjective or informant rated cognitive impairment in healthy adults. J. Alzheimer’s Dis. 43 677–686. 10.3233/jad-140678 25114076
Hughes M. L., Agrigoroaei S., Jeon M., Bruzzese M., Lachman M. E., (2018). Change in cognitive performance from midlife into old age: findings from the midlife in the United States (MIDUS) Study. J. Int. Neuropsychol Soc. 24 805–820. 10.1017/s1355617718000425 30019663
Ihle A., Oris M., Fagot D., Chicherio C., van der Linden B. W. A., Sauter J., et al. (2018). Associations of educational attainment and cognitive level of job with old age verbal ability and processing speed: the mediating role of chronic diseases. Appl. Neuropsychol. 25 356–362. 10.1080/23279095.2017.1306525 28368656
Insel P. S., Mormino E. C., Aisen P. S., Thompson W. K., Donohue M. C., (2020). Neuroanatomical spread of amyloid β and tau in Alzheimer’s disease: implications for primary prevention. Brain Commun. 2 1–11.
Ishiki A., Harada R., Kai H., Sato N., Totsune T., Tomita N., et al. (2018). Neuroimaging-pathological correlations of [18F]THK5351 PET in progressive supranuclear palsy. Acta Neuropathol. Commun. 6:53.
Jack C. R., Holtzman D. M., (2013). Biomarker modeling of alzheimer’s disease. Neuron 80 1347–1358. 10.1016/j.neuron.2013.12.003 24360540
Jaeger B. C., Edwards L. J., Das K., Sen P. K., (2017). An R 2 statistic for fixed effects in the generalized linear mixed model. J. Appl. Stat. 44 1086–1105.
Johnson S. C., Christian B. T., Okonkwo O. C., Oh J. M., Harding S., Xu G., et al. (2014). Amyloid burden and neural function in people at risk for Alzheimer’s disease. Neurobiol. Aging 35 576–584. 10.1016/j.neurobiolaging.2013.09.028 24269021
Kane R. L., Butler M., Fink H. A., Brasure M., Davila H., Desai P., et al. (2017). Interventions to prevent age-related cognitive decline, mild cognitive impairment, and clinical Alzheimer’s-type dementia. Comp. Eff. Rev. 188 86–91.
Karlamangla A. S., Miller-Martinez D., Lachman M. E., Tun P. A., Koretz B. K., Seeman T. E., (2014). Biological correlates of adult cognition: midlife in the United States (MIDUS). Neurobiol. Aging 35 387–394. 10.1016/j.neurobiolaging.2013.07.028 24011541
Karlamangla A. S., Singer B. H., Greendale G. A., Seeman T. E., (2005). Increase in epinephrine excretion is associated with cognitive decline in elderly men: MacArthur studies of successful aging. Psychoneuroendocrinology 30 453–460. 10.1016/j.psyneuen.2004.11.004 15721057
Karlamangla A. S., Singer B. H., McEwen B. S., Rowe J. W., Seeman T. E., (2002). Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc. Natl. Acad. Sci. U.S.A. 98 4770–4775. 10.1073/pnas.081072698 11287659
Ketz N. A., Jensen O., O’Reilly R. C., (2015). Thalamic pathways underlying prefrontal cortex-medial temporal lobe oscillatory interactions. Trends Neurosci. 38 3–12. 10.1016/j.tins.2014.09.007 25455705
Kirchner W. K., (1958). Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 55 352–358. 10.1037/h0043688 13539317
Klunk W. E., Koeppe R. A., Price J. C., Benzinger T. L., Devous M. D., Jagust W. J., et al. (2015). The Centiloid project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s Dement. 11 1.e4–15.e4. 10.1016/j.jalz.2014.07.003 25443857
Koyama A. K., Tworoger S. S., Eliassen A. H., Okereke O. I., Weisskopf M. G., Rosner B., et al. (2016). Endogenous sex hormones and cognitive function in older women. Alzheimer’s Dement. 12 758–765. 10.1016/j.jalz.2015.12.010 26806389
Kreisl W. C., Kim M. J., Coughlin J. M., Henter I. D., Owen D. R., Innis R. B., (2020). PET imaging of neuroinflammation in neurological disorders. Lancet Neurol. 19 940–950. 10.1016/S1474-4422(20)30346-X
Kumar A., (2018). Editorial: neuroinflammation and cognition. Front. Aging Neurosci. 10:413. 10.3389/fnagi.2018.00413 30618719
Leal S. L., Lockhart S. N., Maass A., Bell R. K., Jagust W. J., (2018). Subthreshold amyloid predicts tau deposition in aging. J. Neurosci. 38 4482–4489. 10.1523/jneurosci.0485-18.2018 29686045
Lemoine L., Gillberg P. G., Svedberg M., Stepanov V., Jia Z., Huang J., et al. (2017). Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimer’s Res. Ther. 9 1–13.
Lim Y. Y., Villemagne V. L., Pietrzak R. H., Ames D., Ellis K. A., Harrington K., et al. (2015). APOE ε4 moderates amyloid-related memory decline in preclinical Alzheimer’s disease. Neurobiol. Aging 36 1239–1244. 10.1016/j.neurobiolaging.2014.12.008 25559335
Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S., et al. (2020). Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet 396 413–446. 10.1016/s0140-6736(20)30367-6 34003294
Livingston G., Sommerlad A., Orgeta V., Costafreda S. G., Huntley J., Ames D., et al. (2017). Dementia prevention, intervention, and care. Lancet 390 2673–2734.
Lockhart S. N., Baker S. L., Okamura N., Furukawa K., Ishiki A., Furumoto S., et al. (2016). Dynamic PET measures of tau accumulation in cognitively normal older adults and Alzheimer’s disease patients measured using [18F] THK-5351. PLoS One 11:e0158460. 10.1371/journal.pone.0158460 27355840
Loh P. R., Danecek P., Palamara P. F., Fuchsberger C., Reshef Y. A., Finucane H. K., et al. (2016). Reference-based phasing using the haplotype reference consortium panel. Nat. Genet. 48 1443–1448. 10.1038/ng.3679 27694958
López-Valdés H. E., Martínez-Coria H., (2016). The role of neuroinflammation in age-related dementias. Rev. Invest. Clin. 68 40–48.
Ma C., Yin Z., Zhu P., Luo J., Shi X., Gao X., (2017). Blood cholesterol in late-life and cognitive decline: a longitudinal study of the Chinese elderly. Mol. Neurodegener. 12 1–9.
Manly J. J., Touradji P., Tang M.-X., Stern Y., (2003). Literacy and memory decline among ethnically diverse elders. J. Clin. Exp. Neuropsychol. 25 680–690. 10.1076/jcen.25.5.680.14579 12815505
Mattis S., (1976). “Mental status examination for organic mental syndrome in the elderly patients,” in Geriatrics Psychiatry: A Handbook for Psychiatrists and Primary Care Physicians, eds Bellak L., Karasu T., (New York: Springer), 77–121.
McCarrey A. C., An Y., Kitner-Triolo M. H., Ferrucci L., Resnick S. M., (2016). Sex differences in cognitive trajectories in clinically normal older adults. Psychol. Aging 31 166–175. 10.1037/pag0000070 26796792
McDermott K. L., McFall G. P., Andrews S. J., Anstey K. J., Dixon R. A., (2017). Memory resilience to Alzheimer’s genetic risk: sex effects in predictor profiles. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 72 937–946.
McFall G. P., McDermott K. L., Dixon R. A., (2019). Modifiable risk factors discriminate memory trajectories in non-demented aging: precision factors and targets for promoting healthier brain aging and preventing dementia. J. Alzheimers Dis. 70 S101–S118.
Mella N., Fagot D., Lecerf T., de Ribaupierre A., (2015). Working memory and intraindividual variability in processing speed: a lifespan developmental and individual-differences study. Mem. Cogn. 43 340–356. 10.3758/s13421-014-0491-1 25537952
Meng X., D’Arcy C., (2012). Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS One 7:e38268. 10.1371/journal.pone.0038268 22675535
Mielke M. M., Machulda M. M., Hagen C. E., Christianson T. J., Roberts R. O., Knopman D. S., et al. (2016). Influence of amyloid and APOE on cognitive performance in a late middle-aged cohort. Alzheimers Dement. 12 281–291. 10.1016/j.jalz.2015.09.010 26602629
Murugan N. A., Chiotis K., Rodriguez-Vieitez E., Lemoine L., Ågren H., Nordberg A., (2019). Cross-interaction of tau PET tracers with monoamine oxidase B: evidence from in silico modelling and in vivo imaging. Eur. J. Nucl. Med. Mol. Imaging 46 1369–1382. 10.1007/s00259-019-04305-8 30919054
Narbutas J., Van Egroo M., Chylinski D., González P. V., Jimenez C. G., Besson G., et al. (2019). Cognitive efficiency in late midlife is linked to lifestyle characteristics and allostatic load. Aging 11 7169–7186. 10.18632/aging.102243 31503006
Navitsky M., Joshi A. D., Kennedy I., Klunk W. E., Rowe C. C., Wong D. F., et al. (2018). Standardization of amyloid quantitation with florbetapir standardized uptake value ratios to the Centiloid scale. Alzheimers Dement. 14 1565–1571. 10.1016/j.jalz.2018.06.1353 30006100
Nelson H. E., (1982). The National Adult Reading Test (NART): Test Manual. Windsor: NFER-Nelson.
Neth B. J., Graff-Radford J., Mielke M. M., Przybelski S. A., Lesnick T. G., Schwarz C. G., et al. (2020). Relationship between risk factors and brain reserve in late middle age: implications for cognitive aging. Front. Aging Neurosci. 11:355. 10.3389/fnagi.2019.00355 31998113
Norton S., Matthews F. E., Barnes D. E., Yaffe K., Brayne C., (2014). Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 13 788–794. 10.1016/s1474-4422(14)70136-x
Nyberg L., Lövdén M., Riklund K., Lindenberger U., Bäckman L., (2012). Memory aging and brain maintenance. Trends Cogn. Sci. 16 292–305. 10.1016/j.tics.2012.04.005 22542563
Oh J. M., Okonkwo O. C., Cleary C. A., Christian B. T., Bendlin B. B., Jonaitis E., et al. (2014). Amyloid burden, neuronal function, and cognitive decline in middle-aged adults at risk for Alzheimer’s disease. J. Int. Neuropsychol. Soc. 20 422–433. 10.1017/s1355617714000113 24621494
Osone A., Arai R., Hakamada R., Shimoda K., (2015). Impact of cognitive reserve on the progression of mild cognitive impairment to Alzheimer’s disease in Japan. Geriatr. Gerontol. Int. 15 428–434. 10.1111/ggi.12292 24730644
Ossenkoppele R., Smith R., Ohlsson T., Strandberg O., Mattsson N., Insel P. S., et al. (2019). Associations between tau, Aβ, and cortical thickness with cognition in Alzheimer disease. Neurology 92 e601–e612.
Ownby R. L., (2010). Neuroinflammation and cognitive aging. Curr. Psychiatry Rep. 12 39–45. 10.1007/s11920-009-0082-1 20425309
Papp K. V., Rentz D. M., Orlovsky I., Sperling R. A., Mormino E. C., (2017). Optimizing the preclinical Alzheimer’s cognitive composite with semantic processing: the PACC5. Alzheimers Dement. Transl. Res. Clin. Interv. 3 668–677. 10.1016/j.trci.2017.10.004 29264389
Pettigrew C., Soldan A., (2019). Defining cognitive reserve and implications for cognitive aging. Curr. Neurol. Neurosci. Rep. 19:1.
Pietrzak R. H., Lim Y. Y., Neumeister A., Ames D., Ellis K. A., Harrington K., et al. (2015). Amyloid-β, anxiety, and cognitive decline in preclinical alzheimer disease a multicenter, prospective cohort study. JAMA Psychiatry 72 284–291. 10.1001/jamapsychiatry.2014.2476 25629787
Rentz D. M., Parra Rodriguez M. A., Amariglio R., Stern Y., Sperling R., Ferris S., (2013). Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer’s disease: a selective review. Alzheimers Res. Ther. 5:58. 10.1186/alzrt222 24257331
Reuter-Lorenz P. A., Park D. C., (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol. Rev. 24 355–370. 10.1007/s11065-014-9270-9 25143069
Ritchie K., Ritchie C. W., Jaffe K., Skoog I., Scarmeas N., (2015). Is late-onset Alzheimer’s disease really a disease of midlife?. Vol. 1, Alzheimer’s and Dementia: Translational Research and Clinical Interventions. Amsterdam: Elsevier Inc.
Roe C. M., Ances B. M., Head D., Babulal G. M., Stout S. H., Grant E. A., et al. (2018). Incident cognitive impairment: longitudinal changes in molecular, structural and cognitive biomarkers. Brain 141 3233–3248.
Salvato G., (2015). Does apolipoprotein e genotype influence cognition in middle-aged individuals? Curr. Opin. Neurol. 28 612–617. 10.1097/wco.0000000000000262 26402402
Sartori A. C., Vance D. E., Slater L. Z., Crowe M., (2012). The impact of inflammation on cognitive function in older adults: implications for health care practice and research. J. Neurosci. Nurs. 44 206–217. 10.1097/jnn.0b013e3182527690 22743812
Schöll M., Lockhart S. N., Schonhaut D. R., O’Neil J. P., Janabi M., Ossenkoppele R., et al. (2016). PET imaging of tau deposition in the aging human brain. Neuron 89 971–982. 10.1016/j.neuron.2016.01.028 26938442
Schooler C., Mulatu M. S., Oates G., (1999). The continuing effects of substantively complex work on the intellectual functioning of older workers. Psychol. Aging 14 483–506. 10.1037/0882-7974.14.3.483 10509702
Schultz S. A., Boots E. A., Almeida R. P., Oh J. M., Einerson J., Korcarz C. E., et al. (2015). Cardiorespiratory fitness attenuates the influence of amyloid on cognition. J. Int. Neuropsychol. Soc. 21 841–850.
Song Z., Insel P. S., Buckley S., Yohannes S., Mezher A., Simonson A., et al. (2015). Brain amyloid-β burden is associated with disruption of intrinsic functional connectivity within the medial temporal lobe in cognitively normal elderly. J. Neurosci. 35 3240–3247. 10.1523/jneurosci.2092-14.2015 25698758
Stark S. M., Stevenson R., Wu C., Rutledge S., Stark C. E. L., (2015). Stability of age-related deficits in the mnemonic similarity task across task variations. Behav. Neurosci. 129 257–268. 10.1037/bne0000055 26030427
Starr J. M., Lonie J., (2008). Estimated pre-morbid IQ effects on cognitive and functional outcomes in Alzheimer disease: a longitudinal study in a treated cohort. BMC Psychiatry 8:27. 10.1186/1471-244X-8-27 18426581
Stern Y., Arenaza-Urquijo E. M., Bartrés-Faz D., Belleville S., Cantilon M., Chetelat G., et al. (2018). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s Dement. 16 1305–1311. 10.1016/j.jalz.2018.07.219 30222945
Stroop J. R., (1935). Studies of interference in serial verbal reactions. J. Exp. Psychol. 18 643–662. 10.1037/h0054651
Tabelow K., Balteau E., Ashburner J., Callaghan M. F., Draganski B., Helms G., et al. (2019). hMRI – A toolbox for quantitative MRI in neuroscience and clinical research. Neuroimage 194 191–210. 10.1016/j.neuroimage.2019.01.029 30677501
Terrera G. M., Harrison J. E., Ritchie C. W., Ritchie K., (2020). Cognitive functions as predictors of alzheimer’s disease biomarker status in the european prevention of alzheimer’s dementia cohort. J. Alzheimer’s Dis. 74 1–8.
Then F. S., Luck T., Luppa M., Thinschmidt M., Deckert S., Nieuwenhuijsen K., et al. (2014). Systematic review of the effect of the psychosocial working environment on cognition and dementia. Occup. Environ. Med. 71 358–365. 10.1136/oemed-2013-101760 24259677
Timmers T., Ossenkoppele R., Wolters E. E., Verfaillie S. C. J., Visser D., Golla S. S. V., et al. (2019). Associations between quantitative [18F]flortaucipir tau PET and atrophy across the Alzheimer’s disease spectrum. Alzheimer’s Res. Ther. 11 1–12.
Uematsu M., Nakamura A., Ebashi M., Hirokawa K., Takahashi R., Uchihara T., (2018). Brainstem tau pathology in Alzheimer’s disease is characterized by increase of three repeat tau and independent of amyloid β. Acta Neuropathol. Commun. 6:1.
Veldsman M., Tai X. Y., Nichols T., Smith S., Peixoto J., Manohar S., et al. (2020). Cerebrovascular risk factors impact frontoparietal network integrity and executive function in healthy ageing. Nat. Commun. 11 1–10. 10.1038/s41467-020-18201-5 32895386
Wang H. X., Xu W., Pei J. J., (2012). Leisure activities, cognition and dementia. Biochim. Biophys. Acta Mol. Basis Dis. 1822 482–491. 10.1016/j.bbadis.2011.09.002 21930203
Wechsler D., (1997). The WAIS III – WMS III Technical Manual. San Antonio: Psychological Corporation.
Wechsler D., Stone C. P., (1987). Wechsler Memory Scale-revised. San Antonio: Psychological Corporation.
Weiskopf N., Helms G., (2008). Multi-parameter mapping of the human brain at 1mm resolution in less than 20 minutes. Proc. Int. Soc. Magn. Reson. Med. 16:2241.
WHO (2011). Global Health and Aging. Geneva: WHO.
Wright C. B., Sacco R. L., Rundek T. R., Delman J. B., Rabbani L. E., Elkind M. S. V., (2006). Interleukin-6 is associated with cognitive function: the Northern Manhattan Study. J. Stroke Cerebrovasc. Dis. 15 34–38. 10.1016/j.jstrokecerebrovasdis.2005.08.009 16501663
Zeki Al Hazzouri A., Elfassy T., Carnethon M. R., Lloyd-Jones D. M., Yaffe K., (2017). Heart rate variability and cognitive function in middle-age adults: the coronary artery risk development in young adults. Am. J. Hypertens. 31 27–34. 10.1093/ajh/hpx125 28985245
Zimmermann P., Fimm B., (2002). “A test battery for attentional performance,” in Applied Neuropsychology of Attention: Theory, Diagnosis and Rehabilitation, eds Leclercq P., Zimmermann P., (London: Psychology Press), 110–151.