Gavara, L.; Institut des Biomolécules Max Mousseron, UMR5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, Montpellier Cedex 5, 34093, France
Legru, A.; Institut des Biomolécules Max Mousseron, UMR5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, Montpellier Cedex 5, 34093, France
Verdirosa, F.; Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
Sevaille, L.; Institut des Biomolécules Max Mousseron, UMR5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, Montpellier Cedex 5, 34093, France
Nauton, L.; Université Clermont-Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, 63000, France
Corsica, G.; Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
Mercuri, Paola ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Sannio, F.; Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Laboratoire de biochimie
Coulon, R.; Institut des Biomolécules Max Mousseron, UMR5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, Montpellier Cedex 5, 34093, France
De Luca, F.; Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
Cerboni, G.; Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
Tanfoni, S.; Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
Chelini, G.; Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
Galleni, Moreno ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Hernandez, J.-F.; Institut des Biomolécules Max Mousseron, UMR5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, Montpellier Cedex 5, 34093, France
Lee Ventola, C., The antibiotic resistance crisis: part1: causes and threats. Pharm. Ther. 40 (2015), 277–283 PMC4378521.
World Health Organization, Global priority list of antibiotic-resistant bacteria to guide research, discovery and development of new antibiotics, 27 february 2017.
Nordmann, P., Naas, T., Poirel, L., Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17 (2011), 1791–1798, 10.3201/eid1710.110655.
Walsh, T.R., Toleman, M.A., The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J. Antimicrob. Chemother. 67 (2012), 1–3, 10.1093/jac/dkr378.
Reygaert, W.C., An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4 (2018), 482–501, 10.3934/microbiol.2018.3.482.
Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., Colomb-Cotinat, M., Kretzschmar, M.E., Devleesschauwer, B., Cecchini, M., Ouakrim, D.A., Oliveira, T.C., Struelens, M.J., Suetens, C., Monnet, D.L., Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19 (2019), 56–66, 10.1016/S1473-3099(18)30605-4.
Bush, K., Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 62 (2018), e01076–18, 10.1128/AAC.01076-18.
Palzkill, T., Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci. 1277 (2013), 91–104, 10.1111/j.1749-6632.2012.06796.x.
Gajamer, V.R., Bhattacharjee, A., Paul, D., Deshamukhya, C., Singh, A.K., Pradhan, N., Tiwari, H.K., Escherichia coli encoding blaNDM-5 associated with community-acquired urinary tract infections with unusual MIC creep-like phenomenon against imipenem. J. Glob. Antimicrob. Resist. 14 (2018), 228–232, 10.1016/j.jgar.2018.05.004.
Boyd, S.E., Livermore, D.M., Hooper, D.C., Hope, W.W., Metallo-β-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob. Agents Chemother. 64 (2020), e00397–20, 10.1128/AAC.00397-20.
Gonzalez-Bello, C., Rodriguez, D., Pernas, M., Rodriguez, A., Colchon, E., β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem. 63 (2020), 1859–1881, 10.1021/acs.jmedchem.9b01279.
Docquier, J.-D., Mangani, S., An update on β-lactamase inhibitor discovery and development. Drug Resist. Updat. 36 (2018), 13–29, 10.1016/j.drup.2017.11.002.
C.J. Burns, D. Daigle, B. Liu, D. McGarry, D.C. Pevear, R.E. Trout, β-Lactamase inhibitors. WO Patent WO 2014/089365 A1.
Krajnc, A., Brem, J., Hinchliffe, P., Calvopiña, K., Panduwawala, T.D., Lang, P.A., Kamps, J.J.A.G., Tyrrell, J.M., Widlake, E., Saward, B.G., Walsh, T.R., Spencer, J., Schofield, C.J., Bicyclic boronate VNRX-5133 inhibits metallo- and serine β-lactamases. J. Med. Chem. 62 (2019), 8544–8556, 10.1021/acs.jmedchem.9b00911.
Liu, B., Trout, R.E.L., Chu, G.H., McGarry, D., Jackson, R.W., Hamrick, J.C., Daigle, D.M., Cusick, S.M., Pozzi, C., De Luca, F., Benvenuti, M., Mangani, S., Docquier, J.-D., Weis, W.J., Pevear, D.C., Xerri, L., Burns, C.J., Discovery of Taniborbactam (VNRX-5133): a broad spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J. Med. Chem. 63 (2020), 2789–2801, 10.1021/acs.jmedchem.9b01518.
Vazquez-Ucha, J.C., Arca-Suarez, J., Bou, G., Beceiro, A., New carbapenemase inhibitors: clearing the way for the β-lactams. Int. J. Mol. Sci., 21, 2020, 9308, 10.3390/ijms21239308.
Everett, M., Sprynski, N., Coelho, A., Castandet, J., Bayet, M., Bougnon, J., Lozano, C., Davies, D.T., Leiris, S., Zalacain, M., Morrissey, I., Magnet, S., Holden, K., Warn, P., De Luca, F., Docquier, J.-D., Lemonnier, M., Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 62 (2018), e00074–18, 10.1128/AAC.00074-18.
Leiris, S., Coelho, A., Castandet, J., Bayet, M., Lozano, C., Bougnon, J., Bousquet, J., Everett, M., Lemonnier, M., Sprynski, N., Zalacain, M., Pallin, T.D., Cramp, M.C., Jennings, N., Raphy, G., Jones, M.W., Pattipati, R., Shankar, B., Sivasubrahmanyam, R., Soodhagani, A.K., Juventhala, R.R., Pottabathini, N., Pothukanuri, S., Benvenuti, M., Pozzi, C., Mangani, S., De Luca, F., Cerboni, G., Docquier, J.-D., Davies, D.T., SAR studies leading to the identification of a novel series of metallo-β-lactamase inhibitors for the treatment of carbapenem-resistant Enterobacteriaceae infections that display efficacy in an animal infection model. ACS Infect. Dis. 5 (2019), 131–140, 10.1021/acsinfecdis.8b00246.
Reddy, N., Shungube, M., Arvidsson, P.I., Baijnath, S., Kruger, H.G., Govender, T., Naicker, T., A 2018–2019 patent review of metallo-β-lactamase inhibitors. Exp. Opin. Ther. Pat. 30 (2020), 541–555, 10.1080/13543776.2020.1767070.
Liénard, B.M., Garau, G., Horsfall, L., Karsisiotis, A.I., Damblon, C., Lassaux, P., Papamicael, C., Roberts, G.C., Galleni, M., Dideberg, O., Frère, J.-M., Schofield, C.J., Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols. Org. Biomol. Chem. 6 (2008), 2282–2294, 10.1039/b802311e.
Lassaux, P., Hamel, M., Gulea, M., Delbrück, H., Mercuri, P.S., Horsfall, L., Dehareng, D., Kupper, M., Frère, J.-M., Hoffmann, K., Galleni, M., Bebrone, C., Mercaptophosphonate compounds as broad-spectrum inhibitors of the metallo-β-lactamases. J. Med. Chem. 53 (2010), 4862–4876, 10.1021/jm100213c.
Gonzalez, M.M., Kosmopoulou, M., Mojica, M.F., Castillo, V., Hinchliffe, P., Pettinati, I., Brem, J., Schofield, C.J., Mahler, G., Bonomo, R.A., Llarrull, L.I., Spencer, J., Vila, A.J., Bisthiazolidines: a substrate-mimicking scaffold as an inhibitor of the NDM-1 carbapenemase. ACS Inf. Dis. 1 (2015), 544–554, 10.1021/acsinfecdis.5b00046.
Chen, A.Y., Thomas, P.W., Stewart, A.C., Bergstrom, A., Cheng, Z., Miller, C., Bethel, C.R., Marshall, S.H., Credille, C.V., Riley, C.L., Page, R.C., Bonomo, R.A., Crowder, M.W., Tierney, D.L., Fast, W., Cohen, S.M., Dipicolinic acid derivatives as inhibitors of New Delhi Metallo-β-lactamase-1. J. Med. Chem. 60 (2017), 7267–7283, 10.1021/acs.jmedchem.7b00407.
King, A.M., Reid-Yu, S.A., Wang, W., King, D.T., De Pascale, G., Strynadka, N.C., Walsh, T.R., Coombes, B.K., Wright, G.D., Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510 (2014), 503–506, 10.1038/nature13445.
Bergstrom, A., Katko, A., Adkins, Z., Hill, J., Cheng, Z., Burnett, M., Yang, H., Aitha, M., Mehaffey, M.R., Brodbelt, J.S., Tehrani, K.H., Martin, N.I., Bonomo, R.A., Page, R.C., Tierney, D.L., Fast, W., Wright, G.D., Crowder, M.W., Probing the interaction of aspergillomarasmine A with metallo-β-lactamase NDM-1, VIM-2, and IMP-7. ACS Infect. Dis. 4 (2018), 135–145, 10.1021/acsinfecdis.7b00106.
Matsuura, A., Okumura, H., Asakura, R., Ashizawa, N., Takahashi, M., Kobayashi, F., Ashikawa, N., Arai, K., Pharmacological profiles of aspergillomarasmines as endothelin converting enzyme inhibitors. Jpn J. Pharmacol. 63 (1993), 187–193, 10.1254/jjp.63.187.
Brem, J., Cain, R., Cahill, S., McDonough, M.A., Clifton, I.J., Jiménez-Castellanos, J.C., Avison, M.B., Spencer, J., Fishwick, C.W., Schofield, C.J., Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat. Commun., 7, 2016, 12406, 10.1038/ncomms12406.
Hecker, S.J., Reddy, K.R., Lomovskaya, O., Griffith, D.C., Rubio-Aparicio, D., Nelson, K., Tsivkovski, R., Sun, D., Sabet, M., Tarazi, Z., Parkinson, J., Totrov, M., Boyer, S.H., Glinka, T.W., Pemberton, O.A., Chen, Y., Dudley, M.N., Discovery of cyclic boronic acid QPX7728, an ultra-broad-spectrum inhibitor of serine and metallo-β-lactamases. J. Med. Chem. 63 (2020), 7491–7507, 10.1021/acs.jmedchem.9b01976.
Olsen, L., Jost, S., Adolph, H.W., Pettersson, I., Hemmingsen, L., Jørgensen, F.S., New leads of metallo-β-lactamase inhibitors from structure-based pharmacophore design. Bioorg. Med. Chem. 14 (2006), 2627–2635, 10.1016/j.bmc.2005.11.046.
Kwapien, K., Damergi, M., Nader, S., El Khoury, L., Hobaika, Z., Maroun, R.G., Piquemal, J.-P., Gavara, L., Berthomieu, D., Hernandez, J.-F., Gresh, N., Calibration of 1,2,4-triazole-3-thione, an original Zn-binding group of metallo-β-lactamase inhibitors. Validation of a polarizable MM/MD potential by quantum chemistry. J. Phys. Chem. B 121, 2017, 6295–6312, 10.1021/acs.jpcb.7b01053.
Nauton, L., Kahn, R., Garau, G., Hernandez, J.-F., Dideberg, O., Structural insights into the design of inhibitiors of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia. J. Mol. Biol. 375 (2008), 257–269, 10.1016/j.jmb.2007.10.036.
Christopeit, T., Carlsen, T.J., Helland, R., Leiros, H.K., Discovery of novel inhibitor scaffolds against the metallo-β-lactamase VIM-2 by surface plasmon resonance (SPR) based fragment screening. J. Med Chem. 58 (2015), 8671–8682, 10.1021/acs.jmedchem.5b01289.
Gavara, L., Sevaille, L., De Luca, F., Mercuri, P., Bebrone, C., Feller, G., Legru, A., Cerboni, G., Tanfoni, S., Baud, D., Cutolo, G., Bestgen, B., Chelini, G., Verdirosa, F., Sannio, F., Pozzi, C., Benvenuti, M., Kwapien, K., Fischer, M., Becker, K., Frère, J.-M., Mangani, S., Gresh, N., Berthomieu, D., Galleni, M., Docquier, J.-D., Hernandez, J.-F., 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors. Eur. J. Med. Chem., 208, 2020, 112720, 10.1016/j.ejmech.2020.112720.
Spyrakis, F., Santucci, M., Maso, L., Cross, S., Gianquinto, E., Sannio, F., Verdirosa, F., De Luca, F., Docquier, J.-D., Cendron, L., Tondi, D., Venturelli, A., Cruciani, G., Costi, M.P., Virtual screening identifies broad-spectrum β-lactamase inhibitors with activity on clinically relevant serine- and metallo-carbapenemases. Sci. Rep., 10, 2020, 12763, 10.1038/s41598-020-69431-y.
Vella, P., Hussein, W.M., Leung, E.W., Clayton, D., Ollis, D.L., Mitić, N., Schenk, G., McGeary, R.P., The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg. Med. Chem. Lett. 21 (2011), 3282–3285, 10.1016/j.bmcl.2011.04.027.
Spyrakis, F., Celenza, G., Marcoccia, F., Santucci, M., Cross, S., Bellio, P., Cendron, L., Perilli, M., Tondi, D., Structure-based virtual screening for the discovery of novel inhibitors of New Delhi Metallo-β-lactamase-1. ACS Med. Chem. Lett. 9 (2017), 45–50, 10.1021/acsmedchemlett.7b00428.
Sevaille, L., Gavara, L., Bebrone, C., De Luca, F., Nauton, L., Achard, M., Mercuri, P., Tanfoni, S., Borgianni, L., Guyon, C., Lonjon, P., Turan-Zitouni, G., Dzieciolowski, J., Becker, K., Bénard, L., Condon, C., Maillard, L., Martinez, J., Frère, J.-M., Dideberg, O., Galleni, M., Docquier, J.-D., Hernandez, J.-F., 1,2,4-Triazole-3-thione compounds as inhibitors of dizinc metallo-β-lactamase. ChemMedChem 12 (2017), 972–985, 10.1002/cmdc.201700186.
Gavara, L., Verdirosa, F., Legru, A., Mercuri, P.S., Nauton, L., Sevaille, L., Feller, G., Berthomieu, D., Sannio, F., Marcoccia, F., Tanfoni, S., De Luca, F., Gresh, N., Galleni, M., Docquier, J.-D., Hernandez, J.-F., 4-(N-Alkyl- and -acyl-amino)-1,2,4-triazole-3-thione analogs as metallo-β-lactamase inhibitors: impact of 4-linker on potency and spectrum of inhibition. Biomolecules, 10, 2020, 1094, 10.3390/biom10081094.
Deprez-Poulain, R.F., Charton, J., Leroux, V., Deprez, B.P., Convenient synthesis of 4H–1,2,4-triazole-3-thiols using di-2-pyridylthionocarbamate. Tetrahedron Lett. 48 (2007), 8157–8162, 10.1016/j.tetlet.2007.09.094.
Masi, M., Réfregiers, M., Pos, K.M., Pagès, J.-M., Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol., 2, 2017, 17001, 10.1038/nmicrobiol.2017.1.
Freire, E., Do enthalpy and entropy distinguish first class from best in class?. Drug Discov. Today 13 (2008), 869–874, 10.1016/j.drudis.2008.07.005.
Ladbury, J.E., Calorimetry as a tool for understanding biomolecular interactions and an aid to drug design. Biochem. Soc. Trans. 38 (2010), 888–893, 10.1042/BST0380888.
Borgianni, L., Vandenameele, J., Matagne, A., Bini, L., Bonomo, R., Frère, J.-M., Rossolini, G.M., Docquier, J.-D., Mutational analysis of VIM-2 reveals an essential determinant for metallo-β-lactamase stability and folding. Antimicrob. Agents Chemother. 54 (2010), 3197–3204, 10.1128/AAC.01336-09.
Lamers, R.P., Cavallari, J.F., Burows, L.L., The efflux inhibitor phenylalanine-arginine-naphthylamide (PAN) permeabilizes the outer membrane of gram-negative bacteria. PloS one, 8, 2013, e60666, 10.1371/journal.pone.0060666.
Vaara, M., Novel derivatives of polymyxins. J. Antimicrob. Chemother. 68 (2013), 1213–1219, 10.1093/jac/dkt039.
Vaara, M., Polymyxin derivatives that sensitize Gram-negative bacteria to other antibiotics. Molecules, 24, 2019, 249, 10.3390/molecules24020249.
Pettersen, E.F., Goddard, T.D., Huang, C.H., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., Chimera, U.C.S.F., a visualization system for exploratory research and analysis. J. Comput. Chem. 25 (2004), 1605–1612, 10.1002/jcc.20084.
Docquier, J.-D., Lamotte-Brasseur, J., Galleni, M., Amicosante, G., Frère, J.M., Rossolini, G.M., On functional and structural heterogeneity of VIM-type metallo-β-lactamases. J. Antimicrob. Chemother. 51 (2003), 257–266, 10.1093/jac/dkg067.
Clinical Laboratory Standard Institute, Performance standards for antimicrobial disk susceptibility tests; approved standard, Document M02-A12, 2015, Twelfth Edition, Wayne, PA, USA.
Clinical Laboratory Standard Institute, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Document M07-A10, 2015, Twelfth Edition, Wayne, PA, USA.
Avalos, M., Boetzer, M., Pirovano, W., Arenas, N.E., Douthwaite, S., van Wezel, G.P., Complete genome sequence of Escherichia coli AS19, an antibiotic-sensitive variant of E. coli strain B REL606. Genome Announc., 6, 2018, e00385-18, 10.1128/genomeA.00385-18.
DOI:.
Yang, S., Clayton, S.R., Zechiedrich, E.L., Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. J. Antimicrob. Chemother. 51 (2003), 545–556, 10.1093/jac/dkg126.
Cagnacci, S., Gualco, L., Roveta, S., Mannelli, S., Borgianni, L., Docquier, J.-D., Dodi, F., Centanaro, M., Debbia, E., Marchese, A., Rossolini, G.M., Bloodstream infections caused by multidrug-resistant Klebsiella pneumoniae producing the carbapenem-hydrolysing VIM-1 metallo-β-lactamase: first italian outbreak. J. Antimicrob. Chemother. 61 (2008), 296–300, 10.1093/jac/dkm471.
Luzzaro, F., Docquier, J.-D., Colinon, C., Endimiani, A., Lombardi, G., Amicosante, G., Rossolini, G.M., Toniolo, A., Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-β-lactamase encoded by a conjugative plasmid. Antimicrob. Agents Chemother. 48 (2004), 648–650, 10.1128/aac.48.2.648-650.2004.
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 16 (2009), 2785–2791, 10.1002/jcc.21256.
Sanner, M.F., Python: a programming language for software integration and development. J. Mol. Graph. Mod. 17 (1999), 57–61 PMID: 10660911.