Article (Scientific journals)
Cancer modeling: From mechanistic to data-driven approaches, and from fundamental insights to clinical applications
Bekisz, Sophie; Geris, Liesbet
2020In Journal of Computational Science, 46 (101198)
Peer Reviewed verified by ORBi
 

Files


Full Text
JCompSci_2020_Bekisz.pdf
Publisher postprint (2.3 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Mathematical oncology; In silico methods; Cancer biology; Computational modeling; In silico clinical trials
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Bekisz, Sophie  ;  Université de Liège - ULiège > GIGA In silico medecine - Biomechanics Research Unit
Geris, Liesbet  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Language :
English
Title :
Cancer modeling: From mechanistic to data-driven approaches, and from fundamental insights to clinical applications
Publication date :
October 2020
Journal title :
Journal of Computational Science
eISSN :
1877-7503
Publisher :
Elsevier, Netherlands
Special issue title :
20 years of computational science
Volume :
46
Issue :
101198
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 772418 - INSITE - Development and use of an integrated in silico-in vitro mesofluidics system for tissue engineering
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
ERC - European Research Council
ULiège - Université de Liège
EC - European Commission
Available on ORBi :
since 07 June 2021

Statistics


Number of views
132 (19 by ULiège)
Number of downloads
147 (9 by ULiège)

Scopus citations®
 
48
Scopus citations®
without self-citations
47
OpenCitations
 
16
OpenAlex citations
 
55

Bibliography


Similar publications



Contact ORBi