Paper published in a book (Scientific congresses and symposiums)
Data-driven Prediction of Temperature Evolution in Metallic Additive Manufacturing Process
Pham Quy Duc, Thinh; Vinh Hoang, Truong; Tuan Pham, Quoc et al.
2021In Habraken, Anne; Duchêne, Laurent; Mertens, Anne (Eds.) ESAFORM 2021: The 24th International ESAFORM Conference on Material Forming
Peer reviewed
 

Files


Full Text
Data-driven-Prediction-of-Temperature-Evolution-in-Metallic-Additive-Manufacturing-Process-.pdf
Publisher postprint (791.47 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Deep Learning; Temperature evolution; Directed Energy Deposition
Abstract :
[en] In this study, a data-driven deep learning model for fast and accurate prediction of temperature evolution and melting pool size of metallic additive manufacturing processes are developed. The study focuses on bulk experiments of the M4 high-speed steel material powder manufactured by Direct Energy Deposition. Under non-optimized process parameters, many deposited layers (above 30) generate large changes of microstructure through the sample depth caused by the high sensitivity of the cladding material on the thermal history. A 2D finite element analysis (FEA) of the bulk sample, validated in a previous study by experimental measurements, is able to achieve numerical data defining the temperature field evolution under different process settings. A Feed-forward neural networks (FFNN) approach is trained to reproduce the temperature fields generated from FEA. Hence, the trained FFNN is used to predict the history of the temperature fields for new process parameter sets not included in the initial dataset. Besides the input energy, nodal coordinates, and time, five additional features relating layer number, laser location, and distance from the laser to sampling point are considered to enhance prediction accuracy. The results indicate that the temperature evolution is predicted well by the FFNN with an accuracy of 99% within 12 seconds.
Disciplines :
Mechanical engineering
Author, co-author :
Pham Quy Duc, Thinh ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Vinh Hoang, Truong;  RWTH-Aachen University, Germany.
Tuan Pham, Quoc;  Ton Duc Thang University, Vietnam.
Phuc Huynh, Than;  Thu Dau Mot University, Vietnam.
Xuan Tran, Van;  Thu Dau Mot University, Vietnam.
El Fetni, Seifallah ;  University of Liège
Tran, Hoang Son ;  Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Habraken, Anne  ;  Université de Liège - ULiège > Département ArGEnCo > Département ArGEnCo
Language :
English
Title :
Data-driven Prediction of Temperature Evolution in Metallic Additive Manufacturing Process
Publication date :
13 April 2021
Event name :
24th International Conference on Material Forming
Event organizer :
Anne Habraken pour l'association ESAFORM
Event place :
Conférence digitale organisée par ULiège, Belgium
Event date :
du 14 au 16 avril avec un pré cours le 13 avril
Audience :
International
Main work title :
ESAFORM 2021: The 24th International ESAFORM Conference on Material Forming
Author, co-author :
Habraken, Anne
Duchêne, Laurent
Mertens, Anne
Publisher :
PoPuPs, Liege, Belgium
ISBN/EAN :
9782870190029
Collection name :
-
Peer reviewed :
Peer reviewed
Name of the research project :
EDPOMP
Funders :
Vingroup Innovation Foundation (VINIF) under project code VINIF.2020.DA15..
Available on ORBi :
since 04 June 2021

Statistics


Number of views
296 (27 by ULiège)
Number of downloads
160 (16 by ULiège)

Scopus citations®
 
9
Scopus citations®
without self-citations
3
OpenCitations
 
6

Bibliography


Similar publications



Contact ORBi