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AAbstrbstractact.. In this study, a data-driven deep learning model for fast and accurate prediction of temperature

evolution and melting pool size of metallic additive manufacturing processes are developed. The study focuses

on bulk experiments of the M4 high-speed steel material powder manufactured by Direct Energy Deposition.

Under non-optimized process parameters, many deposited layers (above 30) generate large changes of

microstructure through the sample depth caused by the high sensitivity of the cladding material on the thermal

history. A 2D finite element analysis (FEA) of the bulk sample, validated in a previous study by experimental

measurements, is able to achieve numerical data defining the temperature field evolution under different

process settings. A Feed-forward neural networks (FFNN) approach is trained to reproduce the temperature

fields generated from FEA. Hence, the trained FFNN is used to predict the history of the temperature fields for

new process parameter sets not included in the initial dataset. Besides the input energy, nodal coordinates, and

time, five additional features relating layer number, laser location, and distance from the laser to sampling point

are considered to enhance prediction accuracy. The results indicate that the temperature evolution is predicted

well by the FFNN with an accuracy of 99% within 12 seconds.

KKeeywyworordsds. Deep Learning, Temperature Evolution, Direct Energy Deposition

1 Intr1 Introductionoduction

Additive Manufacturing (AM) technology is a unique capability for building complex three-dimensional (3D) objects

from computer-aided design models. Among many technologies used for metallic AM, Directed Energy Deposition

(DED) is an interesting process that is flexible and adapted to repair operation. This method involves the deposition

of metallic powder, which is melted via a focused heat source. DED is becoming widely used in industries such as

aerospace [1], bio-design [2].

In order to identify optimal process parameters of AM, a design of experiments is often used [3]. However, performing

the experiments of AM to find the optimal parameters is very expensive and time-consuming. The numerical approach,

such as the Finite Element Method (FEM), is often employed to simulate the AM process [4]. However, the computing

cost of these models remains excessively expensive when performing a large number of simulations. Therefore, it is
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not suitable to directly conduct uncertainty quantification and optimization of process parameters using these models

to achieve a robust solution. To overcome this challenge, Machine Learning (ML) techniques are employed to construct

surrogate models representing the complex relations between the process parameter and the temperature history

defining the part quality [5]. Thanks to the predictive ML-based surrogate models, the simulations can be performed

with a negligible computational cost. Recently, the application of ML to the AM field received significant attention from

both the industrial and academic sectors [6, 7, 8]. A comprehensive review of this application can be found in [5].

In AM process, many physical phenomena occur at a short period of time and at a temperature above the melting point

of materials. These temperature profiles strongly affect material properties related to the generated microstructures.

Some previous studies were performed to develop the ML-based surrogate model to predict the temperature evolution

of the AM process. For instance, the Recurrent Neural Network (RNN) was developed to compute the temperature field

for an arbitrary geometry with different scanning strategies 6]. Similarly, the temperature field is also predicted by the

surrogate model with Bayesian loss function [7]. In addition, in [8], the temperature field was predicted directly by the

Physics-Informed Neural Networks (PINNs) without numerical data.

The above ML-based models [7-9] are somewhat complicated (RNN, Bayesian) and only applicable for a few layers.

Thus, it is essential to develop a simple ML-based model to directly predict the temperature field of the AM processes

with a large number of layers. Based on this review, this study aims to develop a simple ML-based surrogate model to

predict the temperature evolution as well as the melting pool size of a DED process of a cubic part with 36 layers. In

this article, the data used to train the ML-based model are first generated using the Finite Element (FE) model, which

has been validated with experimental data (see Section 2). In Section 3, the ML-based surrogate model is described

with its results to predict the temperature evolution and melting pool size during the AM process.

2 ML-based surr2 ML-based surrogogatate model fe model for the DED pror the DED processocess

In this section, we describe the predictive ML-based model called also the surrogate model to predict the temperature

evolution of the DED process. It is built using the following two-step process:

(i) Data collection and data pre-processing,

(ii) Evaluation of the surrogate model parameters.

For step (i), it is very important that the training data is physically representative. Note that this study focuses on

bulk experiments of the M4 high-speed steel material powder. The material properties can be found in detail in [9].

Hereafter, the training data is generated by thermal simulations performed with the updated Lagrangian FE code

“Lagamine” developed by ArGEnCo Department of the University of Liège [4], Belgium. The convection and radiation

boundary conditions are applied as well as the birth element technique to model the process. The classical conduction

non-linear equation is reminded as

where T, k, Qint, cp, 𝜌 and t are the transient temperature, thermal conductivity, the power generated per volume in the

workpiece, apparent heat capacity, density and time, respectively. Fig. 1 plots and compares the temperature evolutions

at one thermocouple located in the substrate obtained within the experiment and by the 2D FE simulation. The detailed

description as well as the schematic of the DED experiment can be find in [4]. As shown in Fig. 1, the result of the 2D FE

simulation (representative of the middle track of each layer) is in good agreement with the experimental bulk result.
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Consequently, the FE model is able to provide high-quality structure data to the ML-based surrogate models described

hereafter.

Fig. 1: The tFig. 1: The temperemperaturature ee evvolution at one thermocouple of the eolution at one thermocouple of the experimental and FE model.xperimental and FE model.

The dataset used in this study consists in five groups of data. Each group is the data obtained from one FE simulation

with a value of input energy Qint (see Eqn. 1). The five values of Qint are chosen as 0.8 Q0, 0.9 Q0, 1.0 Q0, 1.1 Q0, 1.2 Q0,

in which Q0 = Qreference = 1 W/m3. The data group obtained from Qint = 1.0 Q0 is used for further validation and the

remaining four data groups are used for training.

Each data group contains 4.8 million data points (see details below). Consequently, a total of 19.9 million data points

is used for the training of the FFNN-based model. For step (ii), a FFNN is chosen as it has advantages in approximating

highly non-linear and high-dimensional functions. However, training the FFNN with such a small dataset might lead to

the over-fitting problem. As a consequence, the training dataset is partitioned into a training dataset and a validation

dataset. Beside the input energy, nodal coordinates and time, five additional features are considered as input features

to boost the performance of the FFNN-based model including the laser head location in x- and y-direction, the distance

from each sampling point to the laser head in x- and y-direction and the current printing layer at each time-step. Note

that these additional features are also used in the work of Fetni et. al [11]. For any point of interest, the following 9

features are defined (see Fig. 2).

(i) The input energy (Qint)

(ii) x-nodal coordinate (xp)

(iii) y-nodal coordinate (yp)

(iv) Time

(v) The laser head position at x-coordinate (xl)

(vi) The laser head position at y-coordinate (yl)
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(vii) The distance from laser head to each sampling point in x-direction (dx)

(viii) The distance from laser head to each sampling point in y-direction (dy)

(ix) The number of the current printing layer

Fig. 2: The input fFig. 2: The input featureatures of the surres of the surrogogatate modele model

Overall, the input data consists in {𝐱𝑗
(𝑖);𝑖=1,…,𝑁;𝑗=1,…,9}, where N is the number of configurations. Note that N = 19.9

million (2519 nodes × 1978 time-step × 4 simulation data) configurations as described above. The FFNN-based model

is trained by optimizing the weights and biases WW that exist inside the model. It is done by solving the mean squared

error (MSE) problem for each iteration:

where, ℒ(𝑽), NT and 𝑇(𝑖) are the MSE loss function, training data and the temperature value corresponding to each

configuration, respectively. Note that 𝑽 is the matrix of weights to be optimized, argmin is the argument of minimum

and NT=30%N is chosen for this task. The Adaptive Moment Estimation [10] algorithm is used in the stochastic

gradient descent procedure to update network weights after each iteration based on training data with the learning rate

of 0.001. In addition, to assess the performance of FFNN-based model, the metric of the coefficient of determination R2

is used. It is defined as
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where, M, T̂(i),𝑇̅ and T(i) are the number of samples, the predicted temperature from the FFNN-based model, mean

temperature and actual temperature obtained by 2D FE model, respectively. Hence, the closer to 1 the value of R2 is,

the better the model predicts.

3 R3 Results obtained fresults obtained from FFNN-based modelom FFNN-based model

This section presents the prediction results obtained by the FFNN-based model. The analysis of the temperature results

is based on three important points including the substrate (S) and the cladding (P) as shown in Fig. 3. Note that the

cladding points P1 and P2 are located on the symmetric line of the component.

Fig. 3: PFig. 3: Position of throsition of three intee intererest points at west points at which thich temperemperaturature ee evvolution is eolution is exxaminedamined

Fig. 4 shows the train and validation losses of the model. It is observed that the training process ends at 300 epochs as

the validation loss does not further decrease. Note that the epoch is the optimization step, Loss is the training loss per

each epoch (see Fig. 4), Val_Loss is the validation loss per each epoch (see Fig. 4). The converged value of the validate

set is chosen to correspond to a MSE lower than 5×10−5 as it is acceptable for the problem (see Fig. 4).
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Fig. 4: TFig. 4: Trraining and vaining and validation loss of the FFNN-based model at each optimization stalidation loss of the FFNN-based model at each optimization stepep

3.1 Pr3.1 Prediction of the tediction of the temperemperaturature ee evvolution of the DED prolution of the DED processocess

Fig. 5 shows the temperature evolution for three interest points, namely S, P1, and P2 representative of the substrate

and two different layers in the printed part. At each point, the temperature profile shows the characteristic cyclic

thermal history related to the position of the laser head.

Fig. 5: TFig. 5: Temperemperaturature ee evvolution prolution predictedicted at 3 locations (a) substred at 3 locations (a) substratate S, (b) Cladding P1 and (c) Cladding P2 be S, (b) Cladding P1 and (c) Cladding P2 by FE andy FE and

FFNN-based modelsFFNN-based models

For the temperature evolution of the substrate S (see Fig. 5(a)), the result shows a good agreement between the

temperature profile computed by the FFNN-based model and the FE model. It is noted that the 5 additional features

named (v) to (ix) in Fig. 2 are set to zero for all the substrate points. This choice is explained by the observation that

the substrate point S stays far from the laser head and its temperature value is not affected much by these additional

features. Consequently, the prediction of the substrate point is just a function of the nodal coordinates and time. In
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detail, the substrate point has a R2 value of 0.995. Fig. 5(b) and Fig. 5(c) show the comparison of the temperature

evolution of the cladding P1 and P2 obtained from FE and FFNN-based models. Similar to substrate S point, the

temperature evolution of the two cladding points is predicted well by the FFNN-based model with a high R2 value of

0.991 and 0.999, respectively. As shown in Fig. 5, the oscillations of the temperature profiles as well as the temperature

peaks are well captured by the FFNN-based model. Table 1 shows the computational cost and output data size of the

FE and FFNN-based models. As observed in Table 1, the time required to obtain the temperature history of the FEM

simulation for 4540 finite elements is reported as 1800 seconds. On the other hand, the FFNN-based model only takes

12 seconds to get the results. In summary, the FFNN-based model outperformed the FE model in computing time once

datasets and FFNN-based model are developed.

TTable 1. Computational cost of FE and FFNNable 1. Computational cost of FE and FFNN-based models-based models

3.2 Pr3.2 Prediction of the melting pool sizeediction of the melting pool size

Fig. 6 shows the comparison of the melting pool size obtained from the FE and FFNN-based models. The melting

pool size is the liquid zone generated by the laser. It is built by the powder flow melted by the laser energy as well

as by the fusion of the previous build layers. The size of the melting pool plays an important role in determining the

microstructure and mechanical properties of the printed sample. It is directly extracted from the temperature field

data as the material points having a temperature higher than the melting temperature. As shown in Fig. 6, the predicted

melting pool size is in good agreement with FE prediction with a R2 value of 0.971. It is noted that the value of melt

pool equal to zero means the laser is switched off. Similar to the temperature field prediction, the peak variations of

the melting pool area with the height of the cladding are well captured by the FFNN-based model.
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Fig. 6: Melting pool arFig. 6: Melting pool area prea predictedicted fred from FE and FFNN-based modelsom FE and FFNN-based models

3.3 Assessment of the FFNN-based model pr3.3 Assessment of the FFNN-based model predictionediction

In this section, the assessment of the FFNN-based model prediction is performed to give an insight into the model

performance. Given a very small amount of FEM simulation data, one needs to assess the predictive ability of the model

compared with the case of a larger amount of FEM simulation data. Each FEM simulation data is created by changing

the value of input energy 𝑄𝑖𝑛𝑡∈[0.8,1.2] [Q0]. At this stage, a total of 18 FEM simulation data is created instead of the 5

groups of Section 2, and then they will become the validation data of the FFNN-based model. The value of Qint used to

create FEM simulation data for training and validation of the FFNN-based model are described in Table 2. As shown in

Fig. 7, the model predicts the other 18 FEM simulation data with a value of R2 greater than 0.99 while the FFNN-based

model is trained by only 5 FEM simulation data (see Table 2). Note that the datasets used in training are also used for

validation. Accordingly, the FFNN-based model is able to predict the FEM simulation data created by the input energy

𝑄𝑖𝑛𝑡∈[0.8,1.2] [Q0] with excellent accuracy.

TTable 2. The vable 2. The value of Qalue of Qintint used tused to cro createate FEM simulation data fe FEM simulation data for tror training and vaining and validation of the FFNN-based modelalidation of the FFNN-based model
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Fig. 7: Assessment of the FFNN-based model prFig. 7: Assessment of the FFNN-based model prediction using Rediction using R22 metricmetric

4 Conclusion4 Conclusion

In this study, a simple FFNN-based surrogate model for the prediction of the temperature evolution and melting pool

size in the DED process is developed. The numerical data of the evolution of the temperature fields under different

process settings are obtained using a high-fidelity finite element model, which has been validated by experimental

measurements. Beside the input energy, nodal coordinates and time, five additional features are considered as the

input features of the FFNN-based model. Consequently, the surrogate model predicts the temperature evolution as well

as the melting pool size of the DED process with excellent accuracies of 99% and 97%, respectively. In the future study,

an optimization framework for the process parameters will be developed using Bayesian optimization.
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