Data warehouse; Business Intelligence; OLAP; SOLAP; GIS; Social economy; Entrepôt de données; Informatique décisionnelle; SIG; Economie sociale
Abstract :
[en] Due to their multiple sources and structures, big spatial data require adapted tools to be efficiently collected, summarized and analyzed. For this purpose, data are archived in data warehouses and explored by spatial online analytical processing (SOLAP) through dynamic maps, charts and tables. Data are thus converted in data cubes characterized by a multidimensional structure on which exploration is based. However, multiple sources often lead to several data cubes defined by heterogeneous dimensions. In particular, dimensions definition can change depending on analyzed scale, territory and time. In order to consider these three issues specific to geographic analysis, this research proposes an original data cube metamodel defined in unified modeling language (UML). Based on concepts like common dimension levels and metadimensions, the metamodel can instantiate constellations of heterogeneous data cubes allowing SOLAP to perform multiscale, multi-territory and time analysis. Afterwards, the metamodel is implemented in a relational data warehouse and validated by an operational tool designed for a social economy case study. This tool, called “Racines”, gathers and compares multidimensional data about social economy business in Belgium and France through interactive cross-border maps, charts and reports. Thanks to the metamodel, users remain independent from IT specialists regarding data exploration and integration.
Research Center/Unit :
Sphères - SPHERES
Disciplines :
Computer science Human geography & demography
Author, co-author :
Kasprzyk, Jean-Paul ; Université de Liège - ULiège > Département de géographie > Serv. d'étude en géographie éco. fond. et appliquée (Segefa)
Devillet, Guénaël ; Université de Liège - ULiège > Département de géographie > Serv. d'étude en géographie éco. fond. et appliquée (Segefa)
Language :
English
Title :
A Data Cube Metamodel for Geographic Analysis Involving Heterogeneous Dimensions
Alternative titles :
[fr] Un métamodèle de cube de données pour l'analyse géographique impliquant des dimensions hétérogènes
Publication date :
17 February 2021
Journal title :
ISPRS International Journal of Geo-Information
eISSN :
2220-9964
Publisher :
MDPI AG, Basel, Switzerland
Special issue title :
Special issue "GIS Software and Engineering for Big Data"
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Franklin, C.; Hane, P. An introduction to geographic information systems: Linking maps to databases and maps for the rest of us: Affordable and fun. Database 1992, 15, 12-15.
Castells, M. The Rise of the Network Society, 2nd ed.;Wiley-Blackwell: Chichester, UK; Malden, MA, USA, 2010.
Ter Wal, A.L.; Boschma, R.A. Applying social network analysis in economic geography: Framing some key analytic issues. Ann. Reg. Sci. 2009, 43, 739-756.
Glückler, J.; Doreian, P. Editorial: Social network analysis and economic geography-Positional, evolutionary and multi-level approaches. J. Econ. Geogr. 2016.
Jones, A.; Murphy, J.T. Theorizing practice in economic geography: Foundations, challenges, and possibilities. Prog. Hum. Geogr. 2011, 35, 366-392.
Boschma, R.A.; Martin, R. (Eds.) The Handbook of Evolutionary Economic Geography; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2010.
Bathelt, H.; Glückler, J. Relational Research Design in Economic Geography; Oxford University Press: Oxford, UK, 2018; Volume 1.
Negash, S.; Gray, P. Business intelligence. In Handbook on Decision Support. Systems 2; Springer: Berlin/Heidelberg, Germany, 2008; pp. 175-193.
Badard, T.; Dubé, E.; Diallo, B.; Mathieu, J.; Ouattara, M. Open Source Geospatial Business Intelligence (BI) in Action, Presented at the OGRS, Nantes. 2009. Available online: https://docplayer.net/10340377-Open-source-geospatial-business-intelligence-biin- action.html (accessed on 20 November 2019).
Katal, A.; Wazid, M.; Goudar, R.H. Big data: Issues, challenges, tools and good practices. In Proceedings of the 2013 Sixth International Conference on Contemporary Computing (IC3), Noida, India, 8-10 August 2013; pp. 404-409.
Kimball, R.; Ross, M. The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd ed.; JohnWiley & Sons, Inc.: Indianapolis, IN, USA, 2013.
Proulx, M.-J.; Bédard, Y. Comparaison de L’approche Transactionnelle des SIG Avec L’approche Multidimensionnelle pour L’analyse de Données Spatio-Temporelles’. In Proceedings of the Presented at the Colloque Géomatique 2004-Un Choix Stratégique! Montreal, QC, Canada, 27-28 October 2004; Available online: http://yvanbedard.scg.ulaval.ca/wp-content/ documents/publications/359.pdf (accessed on 30 November 2020).
Gao, B.; Zhang, S.; Yao, N. A multidimensional pivot table model based on MVVM pattern for rich internet application. In Proceedings of the 2012 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 4-6 June 2012; pp. 24-27.
Aufaure, M.-A.; Kuchmann-Beauger, N.; Marcel, P.; Rizzi, S.; Vanrompay, Y. Predicting your next OLAP query based on recent analytical sessions. In DataWarehousing and Knowledge Discovery; Bellatreche, L., Mohania, M.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8057, pp. 134-145.
Bédard, Y.; Han, J. Fundamentals of spatial data warehousing for geographic knowledge discovery. In Geographic Data Mining and Knowledge Discovery Edition, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2009; pp. 45-67.
Open Geospatial Consortium Inc. OpenGIS® Implementation Standard for Geographic Information-Simple Feature Access- Part 1: Common Architecture. John, R. Herring. 28 May 2011. Available online: https://www.ogc.org/standards/sfa (accessed on 20 November 2006).
Bimonte, S.; Tchounikine, A.; Miquel, M.; Pinet, F. When spatial analysis meets OLAP: Multidimensional model and operators. Int. J. Data Warehous. Min. 2010, 6, 33-60.
Bimonte, S. Intégration de L’information Géographique dans les Entrepôts de Données et L’analyse en Ligne: De la Modélisation à la Visualisation. Ph.D. Thesis, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France, 2007.
Kasprzyk, J.-P.; Donnay, J.-P. A Raster SOLAP for the visualization of crime data fields. In GEOProcessing 2016; IARIA: Venice, Italy, 2016; pp. 109-117.
Kasprzyk, J.-P.; Donnay, J.-P. A raster SOLAP designed for the emergency services of Brussels agglomeration. In CLOUD COMPUTING 2017; IARIA: Athens, Greece, 2017; pp. 32-38.
Vaisman, A.; Zimányi, E. Mobility data warehouses. IJGI 2019, 8, 170.
Miquel, M.; Bédard, Y.; Brisebois, A. Conception d’entrepôts de données géospatiales à partir de sources hétérogènes Exemple d’application en foresterie. ISI 2002, 7, 89-111.
Rocha, G.M.; Capelo, P.L.; Ciferri, C.D.A. Healthcare decision-making over a geographic, socioeconomic, and image data warehouse. In ADBIS, TPDL and EDA 2020 Common Workshops and Doctoral Consortium; Bellatreche, L., Bieliková, M., Boussaïd, O., Catania, B., Darmont, J., Demidova, E., Duchateau, F., Hall, M., Merčun, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1260, pp. 85-97.
Agapito, G.; Zucco, C.; Cannataro, M. COVID-warehouse: A data warehouse of Italian COVID-19, pollution, and climate data. Int. J. Environ. Res. Public Health 2020, 17, 5596.
Bimonte, S.; Kang, M.-A. Towards a model for the multidimensional analysis of field data. In Advances in Databases and Information Systems; Catania, B., Ivanović, M., Thalheim, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6295, pp. 58-72.
Vassiliadis, P.; Sellis, T. A survey of logical models for OLAP databases. SIGMOD Rec. 1999, 28, 64-69.
Pentaho,Mondrian. 2017. Available online: https://mondrian.pentaho.com/documentation/olap.php (accessed on 21 November 2020).
Microsoft, PowerBI. 2020. Available online: https://powerbi.microsoft.com (accessed on 1 December 2020).
PostGIS. 2020. Available online: https://postgis.net (accessed on 1 December 2020).
Ferro, M.; Fragoso, R.; Fidalgo, R. Document-oriented geospatial data warehouse: An experimental evaluation of SOLAP queries. In Proceedings of the 2019 IEEE 21st Conference on Business Informatics (CBI), Moscow, Russia, 15-17 July 2019; pp. 47-56.
Scabora, L.C.; Brito, J.J.; Ciferri, R.R.; Ciferri, C.D.D. Physical data warehouse design on NoSQL databases-OLAP query processing over HBase. In Proceedings of the 18th International Conference on Enterprise Information Systems, Rome, Italy, 25-28 April 2016; pp. 111-118.
Gür, N.; Pedersen, T.B.; Hose, K.; Midtgaard, M. Multidimensional enrichment of spatial RDF data for SOLAP-Full version. arXiv 2020, arXiv:2002.06608.
Leite, D.F.B.; Baptista, C.D.S.; Amorim, B.D.S.P. An exploratory SOLAP tool for linked open data. IJBIS 2019, 31, 391.
Brito, J.J.; Siqueira, T.L.L.; Times, V.C.; Ciferri, R.R.; de Ciferri, C.D. Efficient Processing of drill-across queries over geographic data warehouses. In Data Warehousing and Knowledge Discovery; Cuzzocrea, A., Dayal, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6862, pp. 152-166.
Malinowski, E.; Zimányi, E. OLAP hierarchies: A conceptual perspective. In Active Flow and Combustion Control. 2018; King, R., Ed.; Springer International Publishing: Cham, Switzerland, 2004; Volume 141, pp. 477-491.
Trujillo, J.; Lujan-Mora, S.; Song, I.-Y. Applying UML and XML for designing and interchanging information for data warehouses and OLAP applications. J. Database Manag. 2004, 15, 41-72.
Boulil, K.; Bimonte, S.; Pinet, F. Conceptual model for spatial data cubes: A UML profile and its automatic implementation. Comput. Stand. Interfaces 2015, 38, 113-132.
Babar, M.; Khattak, A.; Arif, F.; Tariq, M. An improved framework for modelling data warehouse systems using UML profile. IAJIT 2020, 17, 562-571.
Ravat, F.; Song, J. A unified approach to multisource data analyses. Fundam. Inform. 2018, 162, 311-359.
Erraissi, A.; Belangour, A. Meta-modeling of big data visualization layer using On-Line Analytical Processing (OLAP). IJATCSE 2019, 8, 990-998.
Boulil, K.; Bimonte, S.; Pinet, F. Un modèle UML et des contraintes OCL pour les entrepôts de données spatiales. De la représentation conceptuelle à l’implémentation. Ingénierie des Systèmes d’Information 2011, 16, 11-39.
Pedersen, T.; Jensen, C.; Dyreson, C. A foundation for capturing and querying complex multidimensional data. Inf. Syst. 2001, 26, 383-423.
Garani, G.; Eren, C. Comparison of different temporal data warehouses approaches. Online J. Sci. Technol. 2017, 7, 17-27.
Eder, J.; Koncilia, C.; Morzy, T. The COMET metamodel for temporal data warehouses. In Proceedings of the 14th International Conference on Advanced Information Systems Engineering, Berlin, Heidelberg, 27-31 May 2002; pp. 83-99.
Golfarelli, M.; Maio, D.; Rizzi, S. The dimensional fact model: A conceptual model for data warehouses. Int. J. Coop. Inf. Syst. 1998, 7, 215-247.
Ravat, F.; Teste, O.; Tournier, R.; Zurfluh, G. Algebraic and graphic languages for OLAP manipulations. Int. J. Data Wareh. Min. 2008, 4, 17-46.
Abelló, A.; Samos, J.; Soler, F.E.S. Multi-Star Conceptual Schemas for OLAP Systems; UPC Universitat Politècnica de Catalunya BarcelonaTech: Barcelona, Spain, 2001.
Abelló, A.; Samos, J.; Saltor, F. Implementing operations to navigate semantic star schemas. In Proceedings of the 6th ACM International Workshop on Data Warehousing and OLAP-DOLAP '03, New Orleans, LA, USA, 7 November 2003; p. 56.
Object Management Group (OMG). Common Warehouse Metamodel (CWM) Specification v 1.1'. 2003. Available online: https://www.omg.org/spec/CWM/1.1/PDF (accessed on 11 January 2021).
Medina, E.; Trujillo, J. A standard for representing multidimensional properties: The Common Warehouse Metamodel (CWM). In Advances in Databases and Information Systems; Manolopoulos, Y., Návrat, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2435, pp. 232-247.
Cuzzocrea, A.; Fidalgo, R. SDWM: An enhanced spatial data warehouse metamodel. CEUR Workshop Proc. 2012, 855, 32-39.
Letrache, K.; El Beggar, O.; Ramdani, M. The automatic creation of OLAP cube using an MDA approach. Softw. Pract. Exper. 2017, 47, 1887-1903.
VISES Project. 2020. Available online: http://www.projetvisesproject.eu/ (accessed on 23 November 2020).
Cress HDF. 2020. Available online: https://www.cresshdf.org/ (accessed on 23 November 2020).
Concertes. 2020. Available online: https://concertes.be/ (accessed on 23 November 2020).
Design and representation of the time dimension in enterprise data warehouses-A business related practical approach. In Proceedings of the 4th International Workshop on Pattern Recognition in Information Systems, Porto, Portugal, 13-14 April 2004; pp. 416-424.
Mann, S.; Phogat, A.K. Dynamic construction of lattice of cuboids in data warehouse. J. Stat. Manag. Syst. 2020, 23, 971-982.
Pedersen, T.; Jensen, C.S. Multidimensional data modeling for complex data. In Proceedings of the 15th International Conference on Data Engineering, Sydney, Australia, 23-16 March 1999; pp. 336-345.
Racines-L’Economie Sociale et Solidaire en Belgique et en Région Hauts-de-France. 2020. Available online: http://racines. projetvisesproject.eu/ (accessed on 28 November 2020).
Nys, G.-A.; Kasprzyk, J.-P.; Hallot, P.; Billen, R. A semantic retrieval system in remote sensing web platforms. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 1593-1599.
Tardío, R.; Maté, A.; Trujillo, J. A new big data benchmark for OLAP cube design using data pre-aggregation techniques. Appl. Sci. 2020, 10, 8674.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.