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Abstract: Due to their multiple sources and structures, big spatial data require adapted tools to be 

efficiently collected, summarized and analyzed. For this purpose, data are archived in data ware-

houses and explored by spatial online analytical processing (SOLAP) through dynamic maps, charts 

and tables. Data are thus converted in data cubes characterized by a multidimensional structure on 

which exploration is based. However, multiple sources often lead to several data cubes defined by 

heterogeneous dimensions. In particular, dimensions definition can change depending on analyzed 

scale, territory and time. In order to consider these three issues specific to geographic analysis, this 

research proposes an original data cube metamodel defined in unified modeling language (UML). 

Based on concepts like common dimension levels and metadimensions, the metamodel can instan-

tiate constellations of heterogeneous data cubes allowing SOLAP to perform multiscale, multi-ter-

ritory and time analysis. Afterwards, the metamodel is implemented in a relational data warehouse 

and validated by an operational tool designed for a social economy case study. This tool, called 

“Racines”, gathers and compares multidimensional data about social economy business in Belgium 

and France through interactive cross-border maps, charts and reports. Thanks to the metamodel, 

users remain independent from IT specialists regarding data exploration and integration. 
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1. Introduction 

Big data has become a very active research field considering the fast increasing of 

data sources diversity: sensors, smartphones, crowdsourcing, social networks, open da-

tabases, etc. These numerous and large datasets are thus characterized by heterogenous 

semantics, structures and formats leading to time-consuming processes for management 

and analysis purposes. Management and analysis also have to deal with multidimen-

sional aspects of information characterized by space, time and any other analysis axis 

proper to specific domains like category of a product, size of a company, age of a popula-

tion, etc. 

On the one hand, heterogeneous data structures have led to a large panel of technol-

ogies for their management: relational databases, document stores, graphs, data cubes, 

data lakes, etc. On the other hand, powerful tools allow the gathering and the analysis of 

data in order to create valuable information. Big data analysis can be performed by ma-

chines in promising fields like artificial intelligence, machine learning, deep learning, etc. 

However, big data analysis by humans is still an important issue. Unlike machines, hu-

mans need summarized representations of data to take relevant decisions. This aspect on 

which this research is based is called business intelligence (BI). It requires “Extract, Trans-

form, Load” (ETL) tools to transform data structures, data warehouses to archive them in 

a common multidimensional structure and online analytical processing (OLAP) to ex-

plore them through interactive tables, charts or maps. 
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Among big data, around 80% have a spatial component [1]. This opens the door to 

geographic analysis and its specific issues related to heterogeneous data. We identify three 

of them. First, a central principle of geography is multiscale analysis. Indeed, a spatial 

phenomenon must be analyzed at different scales for its global understanding (e.g., street, 

district, city, region, country). However, available data can be more or less detailed de-

pending on their aggregation level. For example, French economics data showing number 

of workers per company size are available at department scale but not at commune scale 

due to statistical confidentiality. Secondly, territories comparison can be biased by data 

definitions differing in these territories. For example, categorization of companies regard-

ing their activity area are different in France and Belgium. Eventually, geography also 

includes temporal analysis which is subject to changes in data dimensions. For example, 

the number of Belgian communes decreased from 589 to 581 due to administrative fusions 

in 2019. 

Geographic analysis is very interdisciplinary because it can be performed in numer-

ous fields involving spatial data: marketing, criminology, archeology, ecology, oceanog-

raphy, urban planning, etc. All these fields have their own experts who might need to 

analyze and explore big geospatial data. However, exploration tools require adapted skills 

in data modelling and programming to process data. Due to previously mentioned issues 

related to geographic analysis, expert users of a specific field might stay dependent on IT 

specialists to durably use exploration tools like OLAP. 

The objective of this research is the development of a BI infrastructure for the geo-

graphic analysis of multidimensional and heterogeneous data. It is intended for social 

economy specialists who want to stay independent of IT specialists regarding data inte-

gration, exploration and analysis. Therefore, the design must be based on a data meta-

model considering the three issues of geographic analysis previously mentioned: mul-

tiscale analysis, multi-territory analysis and time analysis. 

The paper is structured as follows. In Section 2, we review literature related to eco-

nomic geography analysis, BI and OLAP. Section 3 reviews literature related to OLAP 

metamodels and the three specific issues of geographic analysis: multiscale analysis, 

multi-territory analysis and time analysis. In Section 4, we briefly present our social econ-

omy case study and we formulate our research hypothesis. In Section 5, we present our 

original metamodel followed by its relational implementation in Section 6. In Section 7, 

the metamodel is validated by the BI web platform dedicated to the integration and the 

geographic analysis of multidimensional data about social economy companies and work-

ers. Eventually, we conclude this paper in Section 8. 

2. Background 

This section is devoted to a review of the literature relevant to our research objective. 

It starts with main concepts of economic geography analysis since our tool is designed for 

this purpose (Section 2.1). Sections 2.2 to 2.5 are devoted to OLAP regarding BI infrastruc-

tures, Spatial OLAP (SOLAP), OLAP implementation and OLAP modeling. 

2.1. Economic Geography Analysis 

Economic geography has long been committed to defining and studying the concepts 

of learning, innovation and economic governance in relation with territories and geo-

graphic space. This approach would not have been possible without geographic infor-

mation systems (GIS) and their ability to integrate various spatial datasets based on spatial 

coordinates. 

A fundamental debate in economic geography is whether places are more relevant 

to the competitiveness of firms, or whether networks are more important [2]. The concept 

of “space of places” expresses the idea that the location matters for learning and innova-

tion, while networks are important vehicles of knowledge transfer and dissemination [3]. 

However, this debate has not been a real issue in the literature about innovation clusters 

until quite recently. The networks are associated with inter-firm settings in which 
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knowledge creation, dissemination and innovation take place [4]. These ideas resonate 

with multiple fields of research in economic geography by focusing on economic action 

in a relational and dynamic way. This includes geography of practice [5], evolutionary 

economic geography [6] and relational economic geography [7]. The tool developed in 

this research responds to the needs of a project (VISES or “Valorisation de l’Impact Social 

de l’Entrepreneuriat Social”, see Section 4.1) following a similar methodology. Different 

datasets about social economy companies are gathered to study their contribution to ter-

ritorial dynamics. 

2.2. Business Intelligence and Online Analytical Processing (OLAP) 

Business intelligence (BI) refers to a collection of tools for the exploration and analysis 

of large datasets [8]. As shown in Figure 1, a typical BI infrastructure includes heteroge-

neous data sources which are connected to a data warehouse through ETL systems [9]. 

ETL allows the automatization of data transformations to a multidimensional structure 

which is the common paradigm used for data exploration and analysis. Indeed, big data 

are characterized by important volume, variety and complexity requiring adapted tools 

for their collect and storage [10]. 

A data warehouse (DW) archives multidimensional data by following an OLAP ap-

proach [11,12]. Contrary to online transactional processing (OLTP), OLAP involves com-

plex but fast aggregations processes in order to summarize data in tables or charts. This 

aspect can possibly be handled by storing different versions of a same dataset at different 

aggregation levels of a dimension hierarchy (e.g., data per year, data per month, data per 

week, etc.). This redundancy does not affect the consistency of the system since OLAP 

only archives data in time and never requires updates. Indeed, only new data can be in-

serted in a DW and archived data are not supposed to evolve. 

DW exploration and analysis is performed by OLAP tools. These interpret the mul-

tidimensional structure of data in order to effectively represent them in user-friendly in-

terfaces. Data are thus modeled as data cubes (or data marts) characterized by dimension 

axis (e.g., time, location, type of product, etc.) indexing variables (or measures) which can 

be represented in dynamic tables or charts. For example, a measure can be a number of 

sales, a number of people or a molecule concentration depending on time, location and 

various typologies. An OLAP dynamic interface allows end-users to freely navigate in 

data cubes by performing operations like: 

 respectively allocating dimensions to the rows and columns of a pivot table [13]; 

 allocating a measure to the cells of a pivot table; 

 roll up/drill down in a dimension hierarchy (e.g., switching between levels “year” and 

“month” of a time dimension) and consequently aggregate measures; 

 slice a dimension (e.g., only consider measures attached to month “November 2020” 

of time dimension). 

In addition to free exploration, OLAP systems can also supply reporting tools. These 

are static outputs like pdf (“portable document format”) files or web dashboards showing 

specific precomputed data representations. For example, a report can include a chart rep-

resenting sales by weeks and product type which is automatically updated every week 

(when new data are archived in the DW). The analytical potential is less powerful than in 

OLAP free exploration but it directly shows the important trends of data without requir-

ing any action from the end-user. Indeed, data free exploration can sometimes be confus-

ing for uninformed users, especially when data dimensions are numerous [14]. 
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Figure 1. Classical architecture of business intelligence (BI) infrastructure [9]. Asterisk means “n” according to UML con-

vention. 

2.3. Spatial Online Analytical Processing (SOLAP) 

Spatial OLAP (SOLAP) introduces spatialization of OLAP concepts for geographic 

analysis purpose [15]. Therefore, a spatial data cube can include spatial dimensions whose 

elements (members) are characterized by a spatial definition like coordinates of vector 

entities [16]. For example, a spatial dimension can include administrative entities like 

countries associated to georeferenced polygons. Spatial dimensions allow representations 

of data in interactive maps as well as SOLAP operations like spatial drill down in a spatial 

dimension hierarchy (an example is given in Section 5.1, Figure 8). Multiscale analysis and 

territories comparisons can thus be efficiently managed by SOLAP for homogeneous data. 

Moreover, SOLAP can benefit from both multidimensional analysis, provided by OLAP, 

and spatial analysis, provided by GIS. This leads to original SOLAP operations like OLAP-

buffer or OLAP-overlay detailed in [17,18]. This research also proposes the term “geo-

graphic dimension” instead of “spatial dimension” since these dimension members in-

clude both a semantic definition (e.g., Belgium country) and a spatial definition (e.g. a 

polygon representing the Belgian border). The remainder of this paper follows this prop-

osition. 

SOLAP can be useful in various domains like pollutant analysis [17], crime analysis 

[19], risk analysis [20], mobility [21], forestry [22], healthcare [23], epidemiology [24], etc. 

Nevertheless, some domains can require adapted SOLAP models in order to fit to the 

needs of the application. For example, the usual association of vector finite entities to ge-

ographic dimensions is not adapted to domains requiring a continuous vision of space 

(field) [25]. For this purpose, an alternative definition of spatial dimensions is proposed 

in [19]: geographic dimensions remain classical SOLAP dimensions attached to spatial 

features while spatial dimensions are X and Y axis of a coordinate reference system. This 

model can be implemented using raster data in order to manage continuous fields in a 

SOLAP. 

2.4. OLAP Implementation 

OLAP data cubes can be implemented following different strategies. The most pop-

ular ones are multidimensional OLAP (MOLAP) and relational OLAP (ROLAP) [26]. 

On the one hand, MOLAP appears to be the most obvious strategy since it stores and 

manages data cubes as multidimensional arrays. MOLAP operations are thus relatively 

easy since their implementation is very close to their conceptual definition. Nevertheless, 
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MOLAP efficiency depends on data cubes density. Indeed, when they are characterized 

by numerous and detailed dimensions, MOLAP data cubes are likely to store a large 

amount of useless null values (low density issue). Indeed, some data cubes’ cells, i.e., di-

mension intersections or facts, do not exist in data. In GIS domain, this problem is quite 

similar to raster data including numerous “no data” values [19]. 

On the other hand, ROLAP uses relational data warehouses to store data cubes [11]. 

Data cube cells are rows of a fact table which do not require storage for null values. Thus, 

ROLAP efficiently manages data cubes involving numerous and detailed dimensions but 

they require complex SQL (structured query language) queries for multidimensional rep-

resentation in OLAP interfaces. This aspect can be managed by a dedicated OLAP tools 

like Mondrian [27] or PowerBI [28] which allow querying relational data warehouses 

through MDX (MultiDimensional eXpression) language. 

Due to GIS maturity in relational databases [29], SOLAP are often implemented as 

ROLAP. Nevertheless, recent studies also propose (S)OLAP implementation in NoSQL 

databases like documents stores [30], column-oriented databases [31] or RDF (resource 

description framework) graphs [32,33]. 

2.5. OLAP Modeling 

Due to multiple implementation strategies, it is important to describe (S)OLAP mod-

eling at a conceptual level. According to this principle, the well-known star schema [11] 

describes a multidimensional dataset using OLAP concepts like dimension, fact, measure, 

etc. Moreover, multiple datasets can be described by a constellation schema [22] which is 

basically a set of star schemas sharing common elements like measures or dimensions. It 

allows comparisons between heterogeneous data cubes through drill across operations 

[34]. 

Numerous SOLAP studies use a graphic notation to represent star schema models. 

Some use a dedicated multidimensional formalism [21,35]. Others use standard unified 

modeling language (UML) class diagram to describe star schemas (or a very close formal-

ism) [12,22,36]. Amongst these, some propose UML extensions (UML profiles) to be able 

to describe specificities required by OLAP [37,38]. Others describe a generic star schema 

using a UML data cube metamodel [39–41]. In data cube metamodels, OLAP concepts 

such as dimensions, dimension levels, hierarchies or measures are modeled through met-

aclasses as shown in Figure 2 example. These metaclasses allow the automatic instantia-

tion of star schemas based on parameters defined by users. Instantiated star schemas can 

possibly be connected by common dimensions and/or measures in order to model com-

plex constellations of heterogeneous data cubes. Thanks to metamodel parameters stored 

in the DW, constellations structures can be interpreted by a dedicated (S)OLAP tool for 

exploration and comparison purposes. 
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Figure 2. A unified modeling language (UML) data cube metamodel example [41]. Asterisk means “n” according to UML 

convention. 

3. Related Work 

The three identified issues of geographic analysis involving heterogeneous dimen-

sions, i.e., time analysis (1), multi-territory analysis (2) and multiscale analysis (3), can be 

reformulated by the management of data cubes related to heterogeneous dimensions 

which are likely to change in time, geographic space and geographic scale. The authors of 

[42] point out that issues 1 (“Handling change and time”) and 3 (“Handling different lev-

els of granularity”) are rarely present in existing OLAP models (issue 2 is not identified 

by authors). Regarding concepts previously described, Section 3.1 reviews OLAP litera-

ture related to these three issues. Since this paper proposes a solution based on a data cube 

metamodel, Section 3.2 focuses on this specific aspect. Eventually, Section 3.3 gives a brief 

synthesis of these literature reviews in order to define our contribution to SOLAP domain. 

3.1. OLAP Constellations and Heterogeneous Dimensions 

The integration of evolving dimensions (i.e., dimensions changing in time) in data 

warehouses has been an important research topic for the past 20 years, leading to the con-

cept of temporal data warehouses (TDW) [43]. The main idea of TDW is the storage a valid 

time attribute (time point, time interval or temporal element) related to any element of an 

instantiated multidimensional model (i.e., member, fact, etc.) or metamodel (i.e., level, hi-

erarchy, dimension, data cube, etc.). Therefore, SDT support evolving instances as well as 

schemas and OLAP can return consistent results based on multiple periods and versions 

of dimensions [44]. However, since queries are based on a temporal topology, these solu-

tions are not adapted to dimensional changes depending on other dimensions than time 

(space or other thematic dimensions). 

In [22], an alternative solution is proposed to integrate evolving dimensions in a DW: 

a constellation schema where each data cube, related to a time member, is associated to 

“generic dimensions” (i.e., shared by other data cubes) and “specific dimensions” (i.e., 

specific to the involved data cube and thus depending on time). In addition to evolving 

dimensions (time analysis issue), we believe that a constellation could also consider di-
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mensional changes depending on geographic space (multi-territory analysis issue). In-

deed, the dependency of data cubes on dimension members referring to time could actu-

ally be transposed to any other dimension members, including geographic ones. Com-

pared to a single star schema, evolving dimensions in constellations offer low data cube 

densities which are easily handled by both MOLAP and ROLAP systems according to 

[22]. Nevertheless, this solution requires an effective management of constellation navi-

gation in order to select the right data cube(s) answering to a user query. Unfortunately, 

this aspect is not covered by [22] but could possibly be handled by an adapted metamodel. 

In [45], a graphical formalism is proposed to support the conceptual modeling of a 

DW. Multidimensional structures are modeled as quasi-tree graphs called “fact schemes” 

which can be overlapped to support drill-across queries. The authors discuss the possibility 

to include time as a dimension of their model to handle evolving schemas. Again, this idea 

could be extended to space regarding dimension definitions depending on territories. 

In [46], a user-oriented algebra is proposed to define OLAP operations based on a 

multidimensional constellation. However, most of described operations are limited to 

navigation inside a single data cube (roll up, drill down, rotate, etc.). The only exploitation 

of constellation lies in selections of a specific data cubes (“DISPLAY”) and typical drill-

across operations (“FROTATE”) to compare facts sharing dimensions. Navigation in con-

stellation through operations on heterogeneous dimensions (e.g., time-varying dimen-

sion) is not considered. 

In addition to shared dimensions, some interesting studies demonstrate that constel-

lations can be characterized by more flexible inter-stellar relationships. In [47,48], drill 

across operations use semantical similarities between different dimensions (dimension–

dimension), different facts (fact–fact) or dimensions and facts (dimension–fact). These re-

lationships are grouped in three categories: generalization, association and derivation. 

Following this approach, we believe that fact–fact relationships could also be categorized 

as aggregations defined by a dimension hierarchy. We propose to model this as constel-

lations where data cubes share dimension levels (instead of traditional shared dimen-

sions). Consequently, constellations could be navigated through inter-stellar spatial roll up 

and spatial drill down operations when shared levels are geographic (multiscale analysis 

issue). 

3.2. Data Cube Metamodels 

Basically, OLAP metamodels store metadata related to data warehouses for interop-

erability purposes. According to this principle, the Object Management Group (OMG) 

proposes a standard called Common Warehouse Metamodel (CWM) [49]. CWM aims at 

integrating data warehousing and BI tools based on shared metadata. It uses XMI (XML 

Metadata Interchange) for metadata exchange and UML to represent various metamodels 

including OLAP. The OLAP metamodel proposed by CWM (Figure 3) defines multidi-

mensional concepts (data cube, dimension, hierarchy, level, etc.) as classes connected by 

associations. Therefore, it could be used to help data cube integration as well as navigation 

in a constellation. Unfortunately, it is not compatible with our multiscale analysis issue. 

Indeed, the metamodel considers data cubes sharing common dimensions while dimen-

sionality of data can also depend on specific hierarchy levels of dimensions (multiscale 

analysis issue). In other words, navigating in a CWM constellation through roll up and 

drill down is not allowed since levels are exclusive properties of dimensions [50]. 
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Figure 3. Major classes and associations of Common Warehouse Metamodel (CWM) [49]. Asterisk 

means “n” according to UML convention. 

Other UML metamodels are proposed in OLAP literature for various purposes. In 

[41], data quality of spatial DW is controlled by using integrity constraints. In [44], the 

COMET metamodel keeps track of modifications on multidimensional elements in a 

TDW. Other studies propose metamodels to help developers for data cubes design [51] or 

to include OLAP in more general big data architectures [40]. Eventually, more recent stud-

ies use metamodels for the automatic implementation of data cubes based on conceptual 

models [52] (model-driven architecture) and for the automatic instantiation of data cubes 

based on external data sources [39]. Like CWM, most of these UML metamodels allow 

data cubes to share dimensions but do not consider constellation navigation in greater 

depth. 

3.3. Synthesis 

This literature review shows that time-variation of OLAP dimensions has been well 

covered during the past 20 years. However, variations of dimensions depending on space 

and geographic scale are much less studied but could possibly be handled by an adapted 

constellation. On the other hand, numerous works exploit UML metamodels for OLAP 

but, to the best of our knowledge, none of them deeply focus on their ability to lead navi-

gation in a data cube constellation, especially considering all these three aspects of geo-

graphic analysis involving heterogeneous dimensions: multi-territory analysis, multiscale 

analysis and time analysis. This constitutes the main contribution of this paper to the 

SOLAP field. 

4. Social Economy Case Study and Research Hypothesis 

4.1. Social Economy Case Study 

This research is part of a larger project called VISES. In a transnational approach in-

cluding French region Haut-de-France as well as Belgian regions Wallonia and Flanders, 

it aims at “highlighting how social economy companies contribute to the dynamic of the 

territories and to the well-being of their inhabitants” [53]. The methodology includes the 

design, testing and dissemination of an appropriate system for social entrepreneurship to 

improve social impact. The VISES project involves various actors including social econ-

omy networks, social finance institutions and academic researchers. 
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The project includes the development of a web platform, called “Racines”, allowing 

any visitor to use SOLAP to explore social economy data. As shown in Figure 4, explorable 

data are imported by administrators during all the lifetime of the platform. These admin-

istrators are French [54] and Belgian [55] social economy specialists who want to remain 

independent of IT specialists after production. Let’s note that “Racines” also allows data 

sharing by companies but this aspect will not be discussed in this paper. 

 

Figure 4. The “Racines” web platform use cases. 

Social economy datasets can be related to companies or workstations. Measures 

about companies are number of companies, number of workstations, number of full-time 

equivalents and total payroll. These can depend on the following dimensions: 

 company size (e.g., less than 5 workers, from 5 to 10 workers), 

 activity area (e.g., agriculture, human health), 

 social economy family (e.g., association, cooperative, foundation, mutual society), 

 time (year), 

 administrative entity (e.g., Liège province, Paris department). 

In datasets about workstations, measure “number of workstations” can also depend 

on these additional dimensions: 

 sex, 

 age, 

 socio-professional category (e.g. employee, worker). 

In addition to multidimensional aspect of social economy data, the “Racines” SOLAP 

tool must face the three following issues related to data heterogeneity.  

The first issue is multi-territories analysis. Indeed, a user should be able to explore 

maps showing both administrative entities of Belgium and France at different scale levels: 

level 1 includes Belgian communes and French EPCI (“Établissement public de coopé-

ration intercommunale”), level 2 includes Belgian provinces and French departments, 

level 3 includes Belgian regions and France regions (these levels of comparison were de-

fined by social economy specialists based on the average size and population of the ad-

ministrative entities.). However, these data are collected at a national level and conse-

quently have different semantics. Indeed, dimension “activity area” is not the same in 

France than in Belgium. For example, at level 1 (EPCI and communes), Belgian data have 

20 categories while French data have only 8. Moreover, these categories are defined by 

different vocabularies. This underscores the importance of entrusting data integration to 

specialists capable of establishing the right relationships between these different classifi-

cations. 

The second issue is multiscale analysis which also involves semantical changes in 

data. Indeed, due to statistical confidentiality, French data are not available with the same 

level of details at each scale level. For example, the dimension “company size” is present 
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at region and department levels but not at EPCI level. It is to be noted that both data inte-

gration and data exploration are affected by this unavailability.  

The third issue is time analysis. All dimensions are likely to change in time, especially 

administrative entities. For example, the number of Belgian communes decreased from 

589 to 581 due to administrative fusions in 2019. Other fusions are possibly planned for 

2024. Another example is the evolution of dimension “activity area”, involving new cate-

gories, removed categories or semantic redefinitions of former categories in both coun-

tries. Our metamodel must, therefore, consider past changes as well as future changes in 

data dimensionality. 

4.2. Research Hypothesis 

Let’s remember the main objective of our research: the development of a user-

friendly tool for the exploration and analysis of big geospatial data. In order to meet the 

needs of our social economy case study, the developed tool must take these aspects into 

account: 

1. Multidimensional analysis of heterogeneous data. 

2. Geographic analysis involving multiscale analysis, multi-territories analysis and time 

analysis which are likely to change other dimensions definitions (due to heterogene-

ous data semantics). 

3. Independence of end-users from IT specialists regarding data exploration and inte-

gration. 

Considering previously reviewed literature, our research hypothesis is to develop a 

UML SOLAP metamodel able to generate interconnected star schemas (constellation) in 

order to navigate between heterogeneous spatial data cubes sharing common dimension 

levels. The metamodel should be able to find the appropriate data cubes answering to 

spatial drill down or roll up for multiscale analysis and drill across for time and multi-terri-

tory analysis. Afterwards, this metamodel will be implemented within a BI infrastructure 

including a relational data warehouse (ROLAP), a data integration module, an explora-

tion module (SOLAP) and a reporting module. 

5. Metamodel 

This section is devoted to the original metamodel translated from our research hy-

pothesis, i.e., a metamodel for the management of heterogeneous data cubes in constella-

tions characterized by shared dimension levels. Based on SOLAP concepts presented in 

Section 5.1, the data cube metamodel is formalized by UML language in Section 5.2. In 

order to consider the issue related to multiscale analysis, an association of data cubes to 

dimension levels is used. Examples of data cubes instantiated by the metamodel, follow-

ing two different implementation strategies, are given in Section 5.3. Eventually, Section 

5.4 describes an original concept of “metadimension” considering issues related to multi-

territories analysis and time analysis. 

5.1. SOLAP Concepts 

A data cube is characterized by a multidimensional structure which can be defined 

by a star schema [11]. An example is given in Figure 5. This conceptual model shows every 

dimension (red branches of the star) of an economic data set about companies. Each di-

mension is characterized by a set of members hierarchized by ordered levels (symbolized 

in green). For example, the dimension “Activity area” includes three levels: “All”, “Ty-

pology A” and “Typology B”. “Typology B” is the most detailed level (or simply called 

“detailed level”) which could include the following members: “primary education”, “sec-

ondary education”, “High education”, etc. “Typology A” is a less detailed level which 

could include “Education” among others. In this hierarchy, members of level “Typology 

B” can be children of level “Typology A” (“primary education, “secondary education”, 

“high education” all belong to “education”). Finally, level “all” includes only one member 
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which is the parent of every “Typology A” members. Thanks to dimension hierarchies, 

OLAP drill down and roll up operations can be performed to change data granularity. Note 

that only simple hierarchies are considered in Figure 5 example. More complex hierar-

chies, like multiple hierarchies or parallel hierarchies, can be described through other for-

malisms [35].  

Figure 5 also represents a geographic dimension (symbolized in italic), “Administra-

tive entities”, which is characterized by geographic members. A geographic member has 

a semantic definition (e.g., “Liège province” name) and a spatial definition (e.g., geometry 

of “Liège province” [16]). Unlike other dimensions, geographic dimensions can be repre-

sented on a map (e.g., representation of level “provinces” as 2D polygons). Other dimen-

sions can be represented in tables or charts as well as geographic dimensions thanks to 

their semantic definition. When OLAP is characterized by geographic dimensions, it be-

comes SOLAP [17]. It should be noted that time dimensions can also have a specific man-

agement regarding time cycles like hours, weeks, seasons, etc. [56]. 

In the center of the star schema, measures are represented in blue (e.g., “Number of 

companies”, “number of workers”, etc.). They are aggregated data depending on dimen-

sion members they are attached to. In our example, measures attached to a parent dimen-

sion member are the sum aggregation of its child members. For this reason, the time di-

mension is the only one characterized by one single level (“year”) since adding annual 

number of companies in “all” level does not make any sense. 

Finally, the star schema represents facts which are the analyzable elements shown in 

the different SOLAP interfaces (tables, charts, maps). A fact is composed of one member 

per dimension of the star schema and a measure value can be associated to every fact. For 

example, a fact can be the number of companies (measure) in Liège commune (dimension 

“Administrative entity”) with less than 5 workers (dimension “company size”), in con-

struction sector (dimension “activity area”), in 2019 (dimension “time”), all families in-

cluded (dimension “Social economy family”). Note that a fact involving a geographic di-

mension is considered as geographic fact since it can be represented on a map. 

 

Figure 5. A data cube star schema. 

A star schema instance is a data cube (or “data hypercube”). Figure 6 shows the rep-

resentation of a data cube instantiated from Figure 5 star schema. Since it is not possible 
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to graphically represent a hypercube of five dimensions, only three dimensions are con-

sidered. Nevertheless, an n dimensions data cube can efficiently be managed in a data 

warehouse. 

A data cube is the set of every possible fact by considering one level per dimension 

of the star schema. In other words, a data cube of n dimensions is the cartesian product of 

n sets of members called “dimension levels”. Each cell of the data cube is a fact indexed 

by coordinate dimensions and coordinates dimensions are actually identifiers of dimen-

sion members. 

 

Figure 6. A data cube instance. 

All the instances of a star schema constitute a lattice of cuboids which is the set of 

every possible data cube based on a single star schema [18,57]. In other words, there is one 

cuboid for each possible combination of dimension level by considering one level per di-

mension (cartesian products of dimension levels). The most detailed cuboid, called basic 

cuboid, is defined by each most detailed level of dimension (detailed facts). In our exam-

ple, the basic cuboid is defined by “commune”, “year”, “typology B”, “company size” and 

“family”. All other cuboids measures are aggregations of the basic cuboid. OLAP drill 

down and roll up operations can then be performed by navigating in the cuboid lattice. 

Figure 7 shows a lattice of cuboids based on these two theoretical dimensions: {A, B, all} 

and {1, 2, all}. Common SOLAP operations like drill down and roll up are illustrated by 

concrete Belgian examples in the following paragraphs 

 

Figure 7. A lattice of cuboids. 

Figure 8 shows drill down and roll up on “administrative entity” dimension. As a ge-

ographic dimension, its spatial definition (geometry polygons) is represented on a map 
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interface. “number of companies” measures associated to geographic facts are represented 

by a color variation of polygon geometries (level members). The drill down is performed 

on level “region” and more particularly on member “Vlaams Gewest”. The result is the 

set of geographic facts associated to members of inferior level “province” which belong to 

the drilled member “Vlaams Gewest”. Roll up is simply the reverse operation. In SOLAP 

literature, drill down and roll up applied to a geographic dimension are respectively called 

spatial drill down and spatial roll up. Thanks to their ability to quickly switch from a global 

scale to a more local scale (and vice versa), these operations are very efficient for the spa-

tial exploration of geographic big data. In addition to map interface, spatial drill down can 

be performed on other interfaces (charts or tables) representing geographic dimensions 

and/or other non-geographic dimensions. Indeed, this ability to switch from an interface 

to another is a valuable advantage of SOLAP in big data exploration 

It should be noted that for relevant comparisons of spatially discrete entities, 

measures should be independent of the surface they are attached to. They thus should be 

transformed to densities like companies per surface unit or companies per population 

unit. This aspect can be handled by “derived measure” concept explained in Section 5.2. 

 

Figure 8. “Drill down” and “roll up” example on a geographic dimension (map interface). 

Finally, Figure 9 shows a slice operation in both maps (Figure 9a) and charts (Figure 

9b) interfaces. On the one hand, maps show geographic level “province” resulting from 

drill down operation showed in Figure 8. On the other hand, charts show dimension level 

“company size” in rows and geographic level “region” in colors (actually, only one region 

is represented in blue in this example). Represented measures are still “number of com-

panies”. Slice operations isolate subsets of data cubes based on a specific member of one 

or many dimensions. According to this principle, charts of Figure 9b are initially sliced by 

“Vlaanderen” (i.e., member of geographic level “region” represented in blue). However, 

the illustrated slice of the figure is the one applied on dimension “family” (i.e., social econ-

omy family) for both interfaces. Therefore, in figure’s top, represented facts are associated 

to all families (i.e., level “all” of dimension “family”). In figure’s bottom, a slice on member 

“mutual societies” of dimension “family” consequently changes represented facts defini-

tion. Slices on different dimensions can thus be combined together since the second chart 

interface is both sliced by “mutual societies” and “Vlaanderen” members. Slice can be per-
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formed on represented dimensions (e.g., geographic dimension in charts) or non-repre-

sented dimensions (e.g. dimension “family” in both charts and maps). Regarding non-

sliced dimensions, a represented level of dimension shows all members belonging to this 

level (e.g., activity area in charts), while a non-represented dimension is aggregated at its 

“all” level (e.g., activity area in map). Consequently, a non-represented time dimension 

should always be sliced since it does not include any “all” level according to Figure 5 

schema. Therefore, in Figure 9 the example is also sliced by the year 2015. 

 

Figure 9. Slice example: (a)—map interface, (b)—chart interface. 

5.2. Data Cube Metamodel 

This section is devoted to the original metamodel of this research. It is formalized as 

a UML class diagram in Figure 10. Based on the data cubes concepts defined in previous 

section, this metamodel is able to automatically generate and manage data cube instances 

in a constellation. In order to manage heterogeneous dimensions in multiscale analysis, 

multi-territories analysis and time analysis, two original approaches are proposed in the 

metamodel. 

1. In most of UML metamodels proposed in literature, data cubes are associated to di-

mensions. Our metamodel follows a different approach: data cubes are directly asso-

ciated to dimension levels. This allows navigation between different data cubes 

through roll up and drill down operations. Indeed, multiscale analysis must consider 

changes in non-geographic dimensions depending on geographic dimension levels. 

2. Unlike multiscale analysis involving changes depending on dimension level, our two 

other objectives, i.e., multi-territories and time analysis, must consider changes de-

pending on dimension members, i.e., time members for time analysis and geographic 

members for multi-territories analysis. This aspect is managed through a metadimen-

sion concept explained in Section 5.4. 

Although it was developed for a specific application, i.e., exploration and reporting 

of social economy data, this metamodel can be used for SOLAP in other fields involving 

spatially discrete data. Moreover, this conceptual metamodel is not dependent on any da-

tabase management system (DBMS). Each metaclass represented in Figure 10 is discussed 

in the following paragraphs. 
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Figure 10. Data cube metamodel. Asterisk means “n” according to UML convention. 

datacube is the central metaclass. It is associated with at least one level of dimension 

(metaclass level) and at least one measure (metaclass measure). When it is instantiated, it 

generates a new data cube model. As previously explained, data cubes direct association 

to dimension levels is particularly useful when data dimensions (and/or measures) change 

depending on another dimension level. It is the case in our application since data seman-

tics depends on geographic scale (due to statistical confidentiality). For example, French 

data including a dimension “company size” are available at department and region levels 

but not at EPCI level. Consequently, the relative detailed level of dimension for a specific 

data cube is not necessarily the absolute detailed level of the dimension. For example, if a 

level “region” is directly attached to a data cube, it becomes the detailed level for this 

specific data cube, even if dimension “administrative entities” absolutely has more de-

tailed levels like “department” or “commune”. 

Metaclass dimension gather dimension levels in independent analysis axes. Since 

data cubes are associated to dimension levels instead of dimensions, all levels of a dimen-

sion are not necessarily present for the exploration of a single data cube. However, all 

levels of a dimension can be used to explore a data cubes constellation. 

Within a dimension, levels are hierarchized by integer property level_rank of meta-

class level. This indicates an absolute hierarchical position allowing representations of di-

mensions characterized by parallel hierarchies. Regarding a dimension with n level ranks, 

the most detailed levels are ranked by 0 and the less detailed ones are ranked by n-1. 

Representations and comparisons of parallel hierarchies are possible since different levels 

of a single dimension can possibly share the same rank. For example, if levels “French 

Departments” and “Belgian provinces” are both ranked by 1, a SOLAP is able to represent 

these comparable levels in a cross-border map by using property level_rank. 

Metaclass level allows representations of facts in OLAP interfaces like charts (e.g. 

level members as X axis and measures as Y axis) or tables (e.g. level members as rows and 

measures as columns). A level strictly belongs to one dimension (metaclass dimension). A 

recursive association hierarchy defines direct superior levels (parent) and direct inferior 
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levels (child) of a level instance. This allows the metamodel to build dimension hierarchies 

of instantiated data cubes and to perform drill_down (i.e., call child level) as well as roll_up 

(i.e., call parent level) within these hierarchies. However, a constraint must be defined 

regarding property level_rank to remain consistent: considering a level ranked by i, its par-

ent levels must be ranked by i+1 and its child level must be ranked by i−1. 

Metaclass Level is also characterized by boolean property “is_all” indicating whether 

a level is “all” level or not. This property can be used by SOLAP when a data cube dimen-

sion needs to be ignored in the analysis, which equals to aggregating the data cube to the 

“all” level of this dimension. It should be noted that metaclass level is also characterized 

by boolean property is_meta which will be discussed in Section 5.4. 

Levels can be shared by several data cubes in order to manage data cubes constella-

tions. This aspect allows comparisons of data cubes based on their common dimension 

levels. For example, even if France and Belgium have different typologies for dimension 

“activity area”, the metamodel is still able to draw a chart showing number of companies 

per social economy family (common level “family”) for both countries including all activ-

ity areas (in other words, dimension “activity area” is ignored by the analysis). This OLAP 

operation is called drill across [34]. The sharing of dimension levels also allows an OLAP 

interface to copy the state of common levels (e.g., slice “family = mutual societies”) when 

switching from a data cube to another. This aspect thus reinforces navigation consistency 

between semantically different data cubes. Note that for the remaining of this paper, it 

several data cubes share at least one level of a dimension, we use the term “common di-

mension” to refer to this dimension (even if other levels of this dimensions are not com-

mon). 

Metaclass Level can be specialized in geographic_level. This child metaclass includes 

spatial metadata which allows facts representation on maps (e.g., geographic members as 

geometries and measures as symbolization). A geographic level is thus characterized by 

a spatial entity type (e.g., point, line, polygon, multipoint, etc.), a spatial attribute name 

for its geometries and a coordinates reference system given by its spatial reference identi-

fier (SRID). Note that a dimension is considered geographic if it includes at least one geo-

graphic level. 

Metaclass attribute allows any level, geographic or not, to include additional prop-

erties. For example, it can be a population or an area attached to geographic administra-

tive entities. These attributes can possibly be used to calculate derived measures like den-

sities (e.g., a number of companies per 1000 inhabitants or a number of companies per 

km²). An attribute can be of any type (string, real, integer, etc.). 

Metaclass measure is an element associated to datacube. Measures can be shared by 

several data cubes. They are characterized by a type (integer, real, etc.), a unit (sales, com-

panies, workers, etc.) and an aggregation function (sum, count, mean, etc.). Indeed, the 

metamodel can possibly calculate measures attached to less detailed facts by aggregating 

measures attached to more detailed facts. 

Finally, each metaclass is characterized by a unique identifier (id) which is used to 

instantiate data cube models for machine. Each metaclass also includes a description prop-

erty which is used in OLAP interfaces to present elements to humans. 

5.3. Instantiated Data Cube Model Example 

This section shows the way data cube models are instantiated from metamodel pre-

viously described. These instantiated models are described by using the same formalism 

as metamodel: UML class diagram. In order to clearly separate the two conceptualization 

levels, we always use the term “metaclass” when referring to metamodel and the term 

“class” when referring to instantiated models. Metamodel and models are connected by 

the following principle: metaclass instances become either classes or class properties in 

instantiated models. 

The following descriptions are based on a generic example of instantiated data cube. 

It is characterized by these aspects: 
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 a data cube identified as “datacubeA” (property datacube_id in metamodel); 

 two dimensions respectively identified as “dimensionA” and “dimensionB” (prop-

erty dimension_id in metamodel); 

 “dimensionA” includes two levels respectively identified as “dimensionA_level0” 

and “dimensonA_level1” (property level_id in metamodel); 

 “dimensionB” includes two geographic levels respectively identified as “dimen-

sionB_level0” and “dimensonB_level1” (property level_id in metamodel); 

 “datacubeA” includes the whole dimension “dimensionA”; 

 “datacubeA” only includes level “dimension_level1” of dimension “dimensionB”. 

This is a relatively simple example since it includes only two dimensions. Indeed, 

data cubes including three to five dimensions are not rare in our application. However, 

graphic examples with numerous dimensions can be problematic. 

Despite its simplicity, the example covers important aspects of the metamodel and 

our social economic application: 

 a geographic dimension for SOLAP; 

 a data cube depending on a whole dimension and thus enabling drill down and roll 

up through cuboids; 

 a data cube depending on a specific dimension level for heterogeneous data manage-

ment and thus enabling inter-stellar drill down and roll up through data cubes of a 

constellation (due to semantic changes depending on analysis scales). 

Figure 11 shows instantiated model for “dimensionA” and “dimensionB”. All classes 

are levels instantiated from metaclass level. They define level members characterized by 

properties member_id (identifier for machine or data cube coordinate), member_description 

(identifier for human) and member_position. This last property is an integer used to logi-

cally order members in OLAP interfaces. For example, members of a level “month” must 

appear on a chart axis as “January” (1), “February” (2), “March” (3), etc. Note that this 

role can simply be assigned to member_id if the model is implemented in an array DBMS 

where level classes naturally become ordered sets of members (MOLAP). As intrinsic 

properties of all instantiated levels of dimensions, member_id, member_description and mem-

ber_position do not need to be explicitly defined in the metamodel. On the contrary, attrib-

ute properties are specific to each dimension levels. Consequently, any attribute previ-

ously defined in metaclass attribute becomes an attribute property of level classes (possibly 

used to calculate derived measures). 

Since levels of “dimensionB” are geographic, classes dimensionB_level0 and dimen-

sionB_level1 are characterized by an additional property: geom. It is instantiated by prop-

erty spatial_attribute of metaclass geographic_level. Following the Open Geospatial Consor-

tium (OGC) standard [16], geom type is geometry and thus includes all data and metadata 

of a spatial entity attached to a geographic member. It especially includes spatial coordi-

nates of spatial feature, type of spatial feature (instantiated by property entity_type of met-

aclass geographic_level) and SRID (instantiated by property srid of metaclass geo-

graphic_level). Therefore, each geographic member can be represented on a map and pos-

sibly be involved in GIS operations like area calculation, transformation into another co-

ordinate reference system, OLAP slicing based on topological relationships with other ge-

ographic members, geoprocessing, etc. In other words, geographic levels are bridges be-

tween OLAP and GIS technologies leading to SOLAP. 

Detailed levels are, respectively, represented by classes dimensionA_level0 and dimen-

sioB_level0 for “DimensionA” and “DimensionB”. Non-detailed levels, respectively repre-

sented by classes dimensionA_level1 and dimensionB_level1, appear as parents of more de-

tailed levels according to their owning dimension (metaclass dimension) and hierarchy (re-

cursive association hierarchy in metamodel). Therefore, each non-detailed member can be 

parent of a child member belonging to an inferior level. 
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Figure 11. Instantiated dimensions. Asterisk means “n” according to UML convention. 

An instantiated data cube model is a snowflake schema like the one given by Figure 

12 (a UML snowflake represents dimension levels as classes while a star represents levels 

as properties of dimension classes [11]). A central class datacubeA (instance of metaclass 

datacube) defines detailed facts. It is characterized by one to many measure properties in-

stantiated by metaclass measure. In this generic example, the type of property measure is 

undefined since it can be any type (integer, real, string, etc.) given by property type of 

metaclass measure. Nevertheless, measures are generally numeric values like “number of 

companies” or “total payroll”. 

Since a detailed fact is defined by one member of each detailed level of dimension 

(fact coordinates), datacubeA is associated to each detailed level of its dimension “dimen-

sionA” and “dimensionB”: respectively classes dimensionA_level0 and dimensionA_level_1. 

Thereby, measures of non-detailed facts can be computed on the fly by aggregating 

measures of detailed facts since each child member is possibly connected to a parent mem-

ber of superior level. 

However, our social economy application requires a different approach for the man-

agement of cuboids. Indeed, on the fly aggregations can be used if the system is able to 

compute them (sum, count, etc.). These are not applicable in our case because available 

French data do not include measures inferior to 3. Due to statistical confidentiality, these 

facts are labeled “no data”. The inability to compute aggregations is thus solved by in-

cluding cuboid facts in class datacubeA, following an approach similar to the one proposed 

by [58] to support different levels of granularity in the data. In Figure 12, cuboid facts are 

defined by the optional association dimension_fact (if cuboids need to be stored). In addi-

tion to detailed facts (i.e., the basic cuboid), our simple example thus stores one additional 

cuboid defined by the combination of levels dimensionB_level and dimensionA_level1. In an 

example involving more dimension levels, a dimension_fact association should be defined 

for all non-detailed levels of dimensions. These associations are optional because most of 

DW are able to compute their own cuboids, making precomputed cuboids a physical issue 

(rather than conceptual) in order to improve performances of OLAP querying. Regarding 

our social economy application, we include cuboids in conceptual modeling because they 

are part of input data. For example, input data do not include company measures related 

to the “human health” category for a particular administrative entity but these unavaila-

ble measures are still accounted for in a less detailed level “all activity area” of input data. 

Indeed, “no data” does not mean “zero”. 

Eventually, it needs to be recalled that level 0 of dimension B is not present in the 

model because our data cube example only includes level 1 of dimension B (contrary to 

dimension A which is fully included). Therefore, level 1 of dimension B becomes the de-

tailed level for this specific data cube. 
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Figure 12. An instantiated data cube model. Asterisk means “n” according to UML convention. 

5.4. Metadimension 

In Section 5.2, we described our original metamodel allowing data cubes to share 

dimension levels in order to manage multiscale analysis involving heterogenous dimen-

sions. However, two other issues related to heterogeneous dimensions remain: time anal-

ysis and multi-territory analysis. These can be respectively modeled by data cubes de-

pending on specific members of a dimension “time” and a dimension “territory”. Indeed, 

in our social economy case study, dimension member changes can occur in a specific year 

(e.g., redefinition of Belgium communes in 2019) and dimensions can be different in Bel-

gium and France (e.g., typology of activity area). It is thus necessary to include these de-

pendencies in the data cube metamodel shown in Figure 10. 

Our proposition is to include instantiated dimensions as metaclasses of the meta-

model. As shown in Figure 13, metaclass datacube is associated to dimension level year and 

dimension level country in the same way as to metaclass level (here, other metaclasses are 

not represented). Since they are instances of dimension levels being part of the meta-

model, we call them “metalevels”. Moreover, a dimension including a metalevel is called 

a “metadimension”. 
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Figure 13. Metaclass datacube depending on metalevels year and country. Asterisk means “n” according to UML conven-

tion. 

Metalevels are modeled in exactly the same way as instantiated levels in data cube 

models (see Figure 11 compared to Figure 13). However, they can be part of both meta-

model and instantiated models. For example, in a constellation including the years 2018 

and 2019, comparisons between France and Belgium use a Belgian data cube dedicated to 

2018, another Belgian data cube dedicated to 2019 and a French data cube dedicated to 

both 2018 and 2019. On the one hand, facts of French data cube are associated to members 

of dimension level “year” (model level). On the other hand, facts of Belgian data cubes are 

not associated to level “year” but the entire data cubes depend on a metamember of met-

alevel “year” (metamodel level). Therefore, a cross border map for year 2019 can be gen-

erated by a slice operation on metalevel year both in model and metamodel. In order to 

solve this issue, metalevel “year” must be a class shared by both data cube metamodels 

and models. This explains boolean property is_meta in the metaclass level. Eventually, it 

should be noted that all data cubes must be related to at least one metamember of both 

country (i.e., space) and year (i.e., time). 

6. Relational Implementation 

This section describes the relational implementation of our metamodel and its SQL 

exploitation through a constellation example. Section 6.1 describes the logical metamodel 

deduced from conceptual metamodel. Section 6.2 describes the constellation example 

stored in the logical model. Section 6.3 describes a SQL user story involving a smart ex-

ploration of the constellation example. 

6.1. Logical Metamodel 

The logical metamodel of our application is shown in Figure 14. It is based on the 

conceptual metamodel presented in Section 5. It includes two metadimension levels: coun-

try and year. Indeed, as previously explained, data dimensionality differs in Belgium and 

France and it evolves in time as well. Metadimensions are respectively modeled in rela-

tions country and year. Due to many-to-many cardinalities of associations between class 

datacube and metadimensions, these are implemented in bridge tables depending_country 

and depending_year. Indeed, a data cube can depend on Belgium, France or both countries 

and it can depend on many years too (e.g., Belgium between two redefinition of com-

munes). The other relations and foreign keys result from the conversion of the Figure 10 

UML metamodel by following definitions of metaclasses, associations and cardinalities. 



ISPRS Int. J. Geo-Inf. 2021, 10, 87 21 of 36 
 

 

 

Figure 14. Logical data cube metamodel for a relational data warehouse. 

It should be recalled that this metamodel stores required parameters to instantiate 

and explore data cube models like stars or constellations. Unlike other SOLAP metamod-

els considering constellations sharing common dimensions, our metamodel manages con-

stellations sharing common levels of dimensions. Therefore, associations between a data 

cube and its analyzed levels of dimensions are stored in relation analyzed_level. This aspect 

allows spatial drill down and roll up between data cubes depending on a specific geo-

graphic level and characterized by heterogeneous non-geographic dimensions. This im-

portant aspect is illustrated in the following sections. 

6.2. Constellation Example 

In order to illustrate smart navigation between heterogeneous data cubes, we rely on 

a constellation example inspired by our social economy application and stored in Figure 

14 metamodel. It is represented in Figure 15. Although UML formalism could be used to 

represent constellations, we use a non-standard formalism for this example. Indeed, the 

numerous associations between data cubes and levels would lead to a very complex UML 

class diagram. 

The Figure 15 formalism is based on the following rules: 

 A data cube (cube representation) is a set of facts possibly organized in cuboids de-

pending on the implementation strategy (stored cuboids or not);  

 A level (rectangle representation) is a set of dimension members; 

 Levels of the same dimension are grouped by color; 

 Metalevels (levels belonging to a metadimension) are represented by a double rec-

tangle; 
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 Arrows represent associations between data cubes and levels (relation analyzed_level 

in logical metamodel) as well as dimension levels hierarchies; 

 A data cube associated to a detailed level of dimension is implicitly associated to 

other connected levels (e.g., data cube BE_2018 is associated to level size and implic-

itly associated to level all_size); 

 Level rank refers to property level_rank of metamodel (Figure 10 and Figure 14). 

 

Figure 15. Constellation example involving shared dimension levels. 

In order to keep it simple, the constellation example is a temporal subset limited to 

years 2018 and 2019. We also assume that all represented data cubes share the same 

measures (e.g., number of companies). 

The constellation represents four dimensions: size (i.e. company size), activity (i.e. ac-

tivity area of a company), geoadmin (i.e., administrative entities including geographic lev-

els) and time. Dimension size has two levels: a detailed level size and a “all” level all_size. 

Dimension activity has three levels: two parallel detailed levels BE_activity and FR_activity, 

respectively for Belgium and France, and one “all” level all_activity. On the one hand, di-

mension geoadmin has three levels for Belgium: two detailed levels BE_commune_2018 and 

BE_commune_2019, respectively for year 2018 and 2019, and one superior level BE_province 

(covering years 2018 and 2019). On the other hand, dimension geoadmin has two levels for 

France: detailed level FR_epci and superior level FR_department. Dimension geoadmin also 

includes a level country which is parent of both levels BE_province and FR_department. 

Eventually, dimension time has one level year. It should be noted that dimensions geoadmin 

and activity have dependent parallel hierarchies according to [35]. 

The constellation also includes four data cubes: BE_2018 (i.e. Belgian data for year 

2018), BE_2019 (i.e., Belgian data for year 2019), FR_GEO1 (i.e. French data for geoadmin 

level FR_epci) and FR_GEO2 (i.e. French data for geoadmin level FR_department). The dif-

ferent associations of these data cubes to dimension levels are examples of the three issues 
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related to geographic analysis involving heterogeneous dimensions: multi-territories 

analysis, multiscale analysis and time analysis.  

Concerning the multi-territories issue, the constellation shows that dimension activity 

has specific detailed levels for Belgium and France. Therefore, comparisons between these 

two countries (e.g., a map showing Belgian provinces and French departments) can only 

be performed by aggregating measures to the “all” level of this dimension (which is equiv-

alent to ignoring this dimension). Indeed, comparisons between different data cubes are 

performed by aggregating non-represented common dimensions at their common levels, 

aggregating non-common dimensions at their “all” level and slicing non-represented met-

alevels of metadimensions on their common members (these aspects will be detailed in 

the next section). It should be noted that an analysis involving one data cube can still ben-

efit from all its detailed levels (e.g., level BE_activity for data cube BE_2018). 

Concerning the multiscale issue, the constellation shows that dimension size is at-

tached to data cube FR_GEO2, associated to level FR_department, but not to data cube 

FR_GEO1, associated to level FR_epci (due to statistical confidentiality). However, a spatial 

drill down operation on a specific department of data cube FR_GEO2 can still propose EPCI 

data from data cube FR_GEO1 for a smooth navigation, even if dimension size is lost in 

the process. 

Concerning time issue, dimension level year is considered as metalevel (and its di-

mension time is thus a metadimension) since it is a class belonging to both constellation 

schema (Figure 15) and metamodel (Figure 14). Indeed, in addition to year association with 

data cubes FR_GEO2 and FR_GEO1 in constellation schema, Belgium data cubes BE_2018 

and BE_2019 respectively depend on metamembers 2018 and 2019 in the metamodel (due 

to a redefinition of Belgian communes in 2019). Thanks to this concept, a map representing 

Belgian communes and French EPCI can be sliced to a common year like 2018. On the one 

hand, 2018 facts are selected on French data cube FR_GEO1 by a classical slice operation 

on metalevel year. On the other hand, Belgian data cube for year 2018 is selected in the 

metamodel using the same metalevel year shared by the two models (constellation and 

metamodel). 

6.3. SQL Exploration of Constellations 

This section describes a user story based on the constellation example described in 

previous section. Since our data cube meta model is implemented in a relational data 

warehouse, queries are described in SQL formalism depending on logical metamodel pre-

sented in Section 6.1. As previously explained, all data cubes of the constellation example 

share the same measures. This aspect is thus not considered in the following queries. 

However, heterogeneous measures can simply be handled by an additional joint between 

tables measure and analyzed_measure combined to a WHERE condition on the right meas-

ure(s) to consider (e.g., “number of companies”). 

Queries descriptions are limited to data cubes navigation, i.e., finding the right data 

cube(s) to answer to a specific SOLAP operation. Indeed, classical SOLAP operations (slice, 

drill down, roll up, etc.) within a data cube can be handled by an independent SOLAP en-

gine possibly based on another technology (e.g., MOLAP). This dedicated SOLAP tool 

could thus perform SOLAP operations based on data cubes parameters provided by our 

metamodel (dimensions, levels, measures, etc.). 

Query 1 shows data cubes related to year 2018 and country France. It is the starting 

point of a user’s navigation. Since all data cubes are related to members of metadimen-

sions year and country, the user fixes these parameters to start navigation. In order to keep 

it simple, the query result is stored in a view datacube_FR_2018 which will be reused in 

following queries. Results are data cubes FR_GEO1 and FR_GEO2. It should be noted that 

in our example, all French data cubes are related to years 2018 and 2019. 

CREATE OR REPLACE VIEW datacube_FR_2018 AS 

SELECT datacube_id, datacube_description 
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FROM datacube 

INNER JOIN depending_year ON datacube.datacube_id=depending_year.datacube 

INNER JOIN depending_country ON datacube.datacube_id=depending_country.datacube 

AND metalevel_country='FR' AND metalevel_year=2018 

Query 2 shows query 1 results filtered by data cubes including a “company size” 

dimension. Indeed, the user wants to focus its analysis on this specific dimension. The 

result is data cube FR_GEO2 associated to description “French data at department level”. 

SELECT DISTINCT datacube_id, datacube_description 

FROM datacube_FR_2018 

INNER JOIN analyzed_level ON analyzed_level.datacube=datacube_FR_2018.datacube_id 

INNER JOIN level ON level.level_id=analyzed_level.level 

WHERE level.dimension='size' 

Query 3 shows basic information about dimensions and levels of data cube 

FR_GEO2. Indeed, the user has chosen this data cube for exploration and these parameters 

are requested by the SOLAP engine (among others like measures, level attributes, etc.). 

Query results are shown in Table 1. 

SELECT dimension_id, dimension_description, level_id, level_description, level_rank, is_all  

FROM datacube  

INNER JOIN analyzed_level ON analyzed_level.datacube=datacube.datacube_id  

INNER JOIN level ON level.level_id=analyzed_level.level 

INNER JOIN dimension ON dimension.dimension_id=level.dimension 

WHERE datacube_id='FR_GEO2' 

ORDER BY dimension_id, level_rank 

Table 1. Data cube information given query 3. 

Dimension_id Dimension_Description Level_id Level_Description Level_Rank Is_All 

activity Activity Area fr_activity French activity area 0 False 

activity Activity Area all_activity All activity areas 1 True 

geoadmin Administrative entity fr_department French Department 1 False 

geoadmin Administrative entity country Country 2 False 

size Company Size size Company Size 0 False 

size Company Size all_size All company sizes 1 True 

time Time year Year 0 False 

Query 4 shows data cubes related to France and the year 2018 (metadimensions) 

which include child level of FR_department. Indeed, the user has performed a spatial drill 

down on a member of geographic level FR_department associated to level rank 1 (see Table 

1). Although it is the detailed level of geoadmin for data cube FR_GEO2 (no inferior level 

for geoadmin in Table 1), it is not the absolute detailed level of this dimension (as previ-

ously explained, absolute detailed levels have a rank 0). The spatial drill down operation is 

thus permitted by the SOLAP engine which requests appropriate data cubes to the meta-

model to perform the spatial drill down. The only result is data cube FR_GEO1 associated 

to level FR_epci. Afterwards, parameters of SOLAP navigation about data cube FR_GEO2 

(represented level of dimension or sliced member for example) can be transferred to com-

mon dimension levels of FR_GEO1, i.e. year and FR_activity (see Figure 15). Eventually, 

initial parameters of metadimensions have not changed (year 2018 and country France). 

SELECT datacube_id, datacube_description 

FROM datacube_FR_2018 

INNER JOIN analyzed_level on datacube_FR_2018.datacube_id=analyzed_level.datacube 

INNER JOIN level on level.level_id=analyzed_level.level 

INNER JOIN hierarchy on hierarchy.child=level.level_id 

AND parent='fr_department' 

Query 5 shows data cubes related to Belgium and the year 2018 (meta dimensions) 

which include absolute detailed level (rank 0) of dimension geoadmin. Indeed, the user 
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wants to add Belgium to a French map already representing level 0 (FR_epci) of dimen-

sion geoadmin. The system thus proposes comparable data cubes related to metamember 

‘BE’ of metalevel country, i.e. data cubes including a level of same rank for represented 

dimension geoadmin. The only result is data cube BE_2018 associated to description “Bel-

gian data for year 2018” which includes level BE_commune_2018. 

SELECT datacube_id, datacube_description 

FROM datacube 

INNER JOIN depending_year ON datacube_id=depending_year.datacube 

INNER JOIN depending_country ON datacube_id=depending_country.datacube 

INNER JOIN analyzed_level ON datacube_id=analyzed_level.datacube 

INNER JOIN level ON analyzed_level.level=level.level_id 

INNER JOIN dimension ON level.dimension = dimension.dimension_id 

WHERE datacube_id=depending_year.datacube 

AND datacube_id=depending_country.datacube 

AND metalevel_country='BE' AND metalevel_year=2018 

AND level_rank=0 AND dimension='geoadmin' 

Afterwards, geographic comparisons between two data cubes (e.g., BE_2018 and 

FR_GEO1) can be performed by following these rules: 

1. Compared geographic levels have the same rank 

2. Non-represented common dimensions can only be aggregated at their common lev-

els 

3. Non-common dimensions are aggregated at their “all” level 

4. Non-represented metadimensions are sliced by common metamembers 

Rule 1 is already included in query 5. Rules 2, 3 and 4 define a new dimensionality 

characterizing both data cubes to compare. These are detailed below. 

Query 6 shows the dimension levels required by rule 2. It is solved by intersecting 

dimension levels of Belgian data cube with those of French data cube. Results are levels 

country (dimension geoadmin) and all_activity (dimension activity). Therefore, if the com-

parison is a cross-border map, geoadmin is the represented dimension which is aggre-

gated at the comparison level (rank 0 including French EPCI and Belgian communes). On 

the other hand, non-represented dimension activity must be aggregated at level all_activity 

according to query 6 results. In a more complex example, we could imagine an interme-

diary level of dimension activity which would be parent of both levels BE_activity and 

FR_activity, and child of level all_activity. This level, by regrouping French and Belgium 

activities in a less detailed typology, would be included in query 6 results. For example, 

it would allow the filtering (i.e., slice) of the cross-border map based on members of this 

transnational typology of activity area. Eventually, it should be noted that this query does 

not return level year because it is associated to data cube FR_GEO1 but not to data cube 

BE_2018. However, due to its status as a metalevel, at least one member of year is implicitly 

related to all data cubes. Consequently, aggregations are always permitted at metalevel 

year (as well as metalevel country) in all comparisons. 

SELECT dimension_id, level_id 

FROM dimension 

INNER JOIN level on dimension = dimension_id 

INNER JOIN analyzed_level on level = level_id 

INNER JOIN datacube on datacube=datacube_id 

WHERE datacube_id=’BE_2018’ 

INTERSECT 

SELECT dimension_id, level_id 

FROM dimension 

INNER JOIN level on dimension = dimension_id 

INNER JOIN analyzed_level on level = level_id 
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INNER JOIN datacube on datacube=datacube_id 

WHERE datacube_id=’FR_GEO1’ 

Query 7 shows non-common dimensions of French and Belgian data cubes, accord-

ing to rule 3. It applies the symmetric difference between the respective sets of dimensions 

related to these two data cubes. The result is dimension size which is associated to Belgian 

data cube only. Therefore, data cube BE_2018 must always be aggregated at level all_size 

in this comparison. According to rule 3, every dimension should thus include a “all” level. 

However, this does not concern metadimensions since they are implicitly related to all 

data cubes by definition. For this reason, the query includes a condition “is_meta=false”. 

SELECT DISTINCT dimension_id 

FROM dimension 

INNER JOIN level on dimension = dimension_id 

INNER JOIN analyzed_level on level = level_id 

INNER JOIN datacube on datacube=datacube_id 

WHERE datacube_id='BE_2018’ AND is_meta=false 

SYMETRICDIFFERENCE 

SELECT DISTINCT dimension_id 

FROM dimension 

INNER JOIN level on dimension = dimension_id 

INNER JOIN analyzed_level on level = level_id 

INNER JOIN datacube on datacube=datacube_id 

WHERE datacube_id='FR_GEO1' AND is_meta=false 

It should be noted that standard SQL does not include a symmetric difference func-

tion. Instead of “A symetricdifference B”, the query should be “(A differentiated by B) 

union (B differentiated by A)”. Depending on the database management system used, 

“differentiated by” is called “except” or “minus”. However, both queries 6 and 7 should 

be performed by the SOLAP engine instead of the metamodel for obvious performance 

reasons. Indeed, rules 2 and 3 can be directly deduced from multidimensional metadata 

related to the Belgian and French data cubes (which can be returned by queries similar to 

query 3). Nevertheless, our user-story can still be described using the same SQL paradigm.  

Eventually, query 8 shows sliced members of metalevel year, according to rule 4. It is 

solved by intersecting metamembers related to the Belgian data cube with those related 

to the French data cube. The only result is member “2018”. Indeed, Belgian data cube is 

related to the year 2018 only and French data cube is related to both the years 2018 and 

2019. Consequently, datacube FR_GEO1 should always be sliced by the year 2018 in order 

to keep the cross-border map consistent. 

SELECT member_id 

FROM year 

INNER JOIN depending_year on metalevel_year=member_id 

INNER JOIN datacube on datacube_id=datacube 

WHERE datacube_id='FR_GEO1' 

INTERSECT 

SELECT member_id 

FROM year 

INNER JOIN depending_year on metalevel_year=member_id 

INNER JOIN datacube on datacube_id=datacube 

WHERE datacube_id='BE_2018' 
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7. Validation 

The proposed metamodel of this research is validated by “Racines” web platform 

[59]. Its overall architecture is presented (Section 7.1) as well as its three main modules: 

data cube administration module (Section 7.2), SOLAP module (Section 7.3) and reporting 

module (Section 7.4). SECTION 7.5 discusses the product experience from the perspective 

of administrators and end-users. 

7.1. Overall Architecture 

Racines architecture is completely open source. It is mainly based on a relational Post-

greSQL data warehouse. This tool manages the data cube metamodel as well as data cubes 

constellations through SQL queries in different schemas. Geographic dimensions can be 

spatialized following OGC standard [16] thanks to the PostGIS extension of PostgreSQL. 

As shown by Figure 16, other modules depend on the data warehouse. In the data 

cube administration module, administrators define data cube constellations and import 

preprocessed data into the DW. By “preprocessed”, we mean data already having a mul-

tidimensional structure possibly converted by an ETL tool. End-users can explore and an-

alyze data in the SOLAP and reporting modules. These manage SOLAP operations in 

user-friendly interfaces thanks to a SOLAP engine communicating with meta model and 

data cubes stored in the DW. 

 

Figure 16. Racines architecture. 

7.2. Data Cubes Administration Module 

Data cube administration module allows administrators to create constellations of 

data cubes and to feed them with data. As shown by Figure 17, operations must follow a 

specific order from the creation of measures to the integration of data in the DW. 
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Figure 17. Data integration workflow 

Each operation corresponds to a class of the data cube metamodel (see Figure 10). 

These are detailed below. 

1. Create measure: measures are created by defining parameters required by meta-

model like measure_id, type, measure_description, etc. 

2. Create dimension: dimensions are created by defining parameters dimension_id and 

dimension_description. 

3. Create level attribute: attributes are created by defining parameters attribute_id, type 

and attribute_description. 

4. Create geographic level: geographic levels of dimensions are created based on a 

GeoJSON (geo javascript object notation) file including members identifiers, mem-

bers descriptions (e.g. names of Belgian communes), members geometries according 

to [16], members identifiers of superior level previously created (e.g., Belgian prov-

ince) and any other attributes previously created in step 3 (e.g., population of a com-

mune). In addition to this, the administrator defines coordinate reference system in 

parameter srid according to class geographic_level of the metamodel. Parameters en-

tity_type and spatial_attribute are not needed in “Racines” because geographic levels 

always include polygons defined in a PostGIS spatial attribute named “geom”. Fi-

nally, the administrator defines all parameters belonging to class level of metamodel 

(level_id, level_rank, etc) as well as level dimension previously defined in step 2. 

5. Create level: based on a CSV (comma-separated values) file containing cuboid data, 

a non-geographic level can be created in a way similar to step 4 without the spatial 

aspect. 

6. Create data cube: Finally, a data cube can be created if all its measures and dimension 

levels to associate are already stored in the DW (remember that data cubes can share 

common dimension levels and measures in order to store constellations in the DW). 

After the definition of parameters datacube_id, datacube_description and related 

metadimension metamembers (country and year), data related to cuboids are im-

ported from a CSV file. 
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Data cube administration module also permits to merge data cubes including a non-

common dimension level when it is possible. Indeed, dimension “activity area” has dif-

ferent typologies in Belgium and France. Belgium has 20 categories while France has 8. In 

the fusion operation, Belgian facts associated to this dimension are automatically aggre-

gated based on a lookup table defined by the administrator. For example, facts related to 

Belgian categories “primary education” and “secondary education” can be merged to cor-

respond to a French category “Education”. Based on this newly created data cube related 

to both Belgium and France metamembers, cross border maps sliced by “Education” can 

be generated by the SOLAP module. 

7.3. SOLAP Module 

The SOLAP module is available to any user. It allows the free exploration of data 

cubes created in the data cube administration module. These are grouped by year, country 

and geographic level. Once a data cube is selected, SOLAP operations can be performed 

on a map interface showing geographic levels of dimensions (see Figure 18). Depending 

on the user’s choice, geographic entities can be classified by linear or quintiles method for 

their symbolization. The dynamic map interface is programmed in javascript language 

and it is mainly based on the OpenLayers library. Depending on SOLAP queries, map 

layers are sent in GeoJSON format by the SOLAP engine (server side). 

During exploration, users can switch from map interface to chart interface (and vice 

versa). On chart interface, any dimension level (geographic or not) of the data cube can be 

represented with the same measure and the same sliced dimension members than map 

interface. 

At the time of writing this paper, available data of the SOLAP module concern: 

 Companies depending on year, country, administrative entity, activity area, size and 

social economy family. 

 Workers depending on year, country, administrative entity, activity area, social econ-

omy family, sex and age. 

Given the independence of administrators from IT specialists for data integration, 

this list is likely to evolve in the future. 
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Figure 18. Racines module for spatial online analytical processing (SOLAP). 

In addition to visualization and derived spatial measures (e.g., companies per km²), 

geometries attached to geographic dimensions can also bring spatial analysis to OLAP. 

Therefore, other spatial functionalities are planned in future updates of the SOLAP mod-

ule. In particular, social economy specialists are interested in slicing geographic data cu-

bes based on spatial relationships between geographic members of dimensions. For ex-

ample, a multidimensional analysis could focus on a specific commune and its adjacent 

neighbors. Moreover, external spatial layers could spatially intersect geographic dimen-

sions, resulting in new members and new spatially aggregated facts [17,19]. For example, 

end-users could be able to import employment areas in the SOLAP to aggregate facts re-

lated to intersecting communes (if such aggregations are possible with respect to statistical 

confidentiality). These operations can be implemented in our SOLAP engine thanks to 

spatial SQL provided by PostGIS. 

7.4. Reporting Module 

The reporting module is also available to any user. Unlike SOLAP, the exploration is 

limited to choosing an administrative entity through a tree menu representing the geo-

graphic dimension hierarchy (see Figure 19a). Afterwards, the system generates a com-

plete report about the chosen entity for the last available year in the DW (see Figure 19b). 

The report starts with a general context including relevant information about chosen 

entity like: 

 Population (attribute of dimension level), 

 Population density (idem), 

 Total numbers of companies, employers and total payroll (data cube measures), 

 Maps showing number of companies and workers for same level entities belonging 

to the administrative entity of superior level, e.g., all provinces belonging to Belgian 

region “Wallonie” if province “Liège” was chosen (Spatial roll up). 
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Below this general context, users can find various charts, tables and maps suggested 

by social economy specialists depending on available information in data cubes (i.e., de-

pending on country and geographic level). Shown variables can possibly be more complex 

derived measures like percentage of men and women per social economy family, percent-

age of social economy companies versus other companies per activity area, etc. In addition 

to browser visualization, the complete report can be downloaded in pdf format as well. 

Since they are based on data cube metamodel, annual reports are automatically up-

dated when more recent data are integrated by administrators. Nevertheless, important 

semantic evolutions of data could require programming skills because some data repre-

sentations of the reporting module depend on very specific dimensions and/or dimension 

members. The SOLAP module is not affected by this issue. 

 

Figure 19. Racines reporting module: (a)—the tree menu for the selection of a geographic entity, (b)—the report about the 

selected entity. 

7.5. Product Experience 

This section is devoted to the experience of Racines from the perspective of adminis-

trators and end-users. Indeed, the tool was designed to facilitate both data integration and 

exploration without requiring any programming skills specific to IT specialists. 
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Administrators are social economy specialists who were already used to analyses of 

multidimensional data stored in MS Excel files. Consequently, the appropriation of main 

OLAP concepts was not a real issue since OLAP vocabulary was easily transposable to 

social economy field. For example, “data cubes” were actually identified as “datasets”, 

“facts” as “data”, “measures” as “indicators” or “dimensions” as “crossing criteria”. A 

more difficult concept was the sharing of dimension levels in the constellation. Indeed, 

once delivered to themselves, some administrators tended to create new levels instead of 

associating semantically similar levels already stored in the DW. Indeed, since dimension 

members are not always characterized by unique identifiers in input data (e.g., social 

economy family), the system requires manual association of members whose description 

does not exactly fit to those already present in the DW. In order to maintain a consistent 

navigation of the constellation, it was necessary to insist on this aspect in a three-hour 

training devoted to data integration into Racines. However, automatic integration of di-

mension levels could be improved by natural language processing (NLP) [60]. 

Other difficulties related to Racines administration were encountered in the pre-pro-

cessing of spatial data by GIS. Indeed, Racines requires GeoJSON files as inputs to create 

geographic levels of dimension. Therefore, another three-hour training was devoted to 

the creation of GeoJSON files by using QGIS tool. Based on ESRI shapefiles and Excel files, 

it included a few specific GIS processes like data reprojection into WGS84 coordinates 

reference system, attribute-based joints, spatial intersections and spatial aggregations by 

union. Indeed, French EPCI are basically groups of communes which are likely to change 

every year. However, EPCI geometries are not always proposed by national providers of 

spatial data and it is thus necessary to create them based on their semantic definition, i.e., 

a list of commune identifiers. 

From the end-user’s point of view, Racines is still too young to be completely evalu-

ated regarding social economy. Since it requires almost no action from users, we believe 

the reporting module is a great support to anyone who needs a quick data analysis related 

to a specific territory. On the other hand, the SOLAP module offers many more possibili-

ties for users ready to spend more time on both analysis and their familiarization with 

basic OLAP operations (slice, roll up, drill down, etc.). Indeed, data exploration provided 

by SOLAP often requires several operations before finding interesting correlations. For 

this reason, query execution times are not supposed to exceed a few seconds [61]. 

Considering the performance standards, Racines ROLAP engine provides good re-

sults since SOLAP operations do not exceed 1 or 2 seconds to return data. These execution 

times include multidimensional querying of data cube(s) (possibly two data cubes if both 

Belgium and France are involved in a drill across operation) and the sending of JSON 

results to the browser. Currently, the largest data cube of Racines DW has 99,050 facts, 

which is relatively small compared to other BI projects dealing with billions of facts [61]. 

Actually, the only performance issue was encountered in the conversion of geographic 

facts into GeoJSON format by PostGIS DW (several seconds). We have much better results 

by storing levels of geographic dimensions as GeoJSON files in the server and asking the 

javascript client to join them with facts returned by SOLAP (based on member identifiers). 

Nevertheless, we still need to store PostGIS geometries in order not to lose the spatial 

analysis potential of Racines, which is sadly redundant. Eventually, the selection of data 

cubes in the constellation is very fast (around 50 milliseconds) since Racines currently 

stores only 50 data cubes (this number is not supposed to exceed several hundred in future 

years). A real performance test involving more data cubes and more countries to compare 

would provide an interesting perspective. 

8. Conclusions 

This research aimed at developing a business intelligence tool dealing with three im-

portant issues of geographic analysis related to heterogeneous and multidimensional 

data: multiscale analysis (i.e., dimension changes depending on scale), multi-territories 
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analysis (i.e., dimension changes depending on territory) and time analysis (i.e., dimen-

sion changes depending on time). The tool had to be designed for a social economy case 

study facing these three issues and requiring independence of the user regarding data 

exploration and integration. 

Based on a review of literature related to economic geography, business intelligence, 

(S)OLAP and more particularly its modeling aspects (related to the three issues of geo-

graphic analysis), we formulated this hypothesis to meet our research objective: the design 

of a UML metamodel able to instantiate spatial data cubes sharing common dimension 

levels. Indeed, data cube metamodels can be used for both easy integration of heteroge-

neous data and SOLAP navigation in complex constellations of data cubes. 

After this introduction, we described our original data cube metamodel. Based on 

SOLAP concepts (dimensions, measures, facts, etc), it was designed as a UML class dia-

gram independent from any data warehouse management system. We also used this UML 

formalism to show a data cube example instantiated by the metamodel. In order to con-

sider the multiscale analysis issue, the metamodel is based on direct associations of data 

cubes to dimension levels. Regarding multi-territory and time analysis issues, the meta-

model includes metadimensions respectively modeling space (country) and time (year), 

and belonging to both metamodel and instantiated data cube models. 

Afterwards, we presented a relational implementation of the metamodel and its SQL 

exploitation based on a constellation example inspired by our social economy case study. 

We thus demonstrated smart navigation in data cube constellations through spatial “drill 

down” or “roll up” operations as well as data cubes comparisons through consistent cross-

border maps. 

Eventually, the metamodel was validated by an operational web platform, called 

“Racines”, developed for social economy specialists. “Racines” allows efficient integration 

and analyses of various multidimensional datasets about social economy in France and 

Belgium through three different modules: 

 a data cube administration module for easy integration of heterogeneous data in data 

cube constellations; 

 a SOLAP module for data exploration in dynamic maps (including cross-border 

maps) and charts;  

 a reporting module showing static representation of data depending on hierarchized 

administrative entities. 

The metamodel designed for this research shows an efficient management of hetero-

geneous data according to their integration and exploration in SOLAP. Compared to other 

SOLAP metamodels, it allows end-users to explore complex constellations through inter-

stellar spatial drill down and spatial roll up while remaining consistent with scale-dependent 

dimensions. It also allows spatiotemporal comparisons of data cubes characterized by 

time-dependent and territory-dependent dimensions. Moreover, data exploration re-

mains intuitive since it involves only a few dimensions which can possibly gather multiple 

and parallel hierarchies according to [35]. Indeed, the "level_rank" parameter of the met-

amodel is optional since it was introduced to constrain data cubes comparisons to those 

deemed relevant by social economy specialists. 

Although it was designed for social economy specialists, the metamodel manage-

ment of the three identified geographic issues (multiscale, multi-territory and time analy-

sis) can be useful in any other domain involving geographic analysis of heterogeneous big 

data (including cross-border analyses). However, our study focused on comparisons in-

volving only two countries, which does not fully demonstrate the applicability of the met-

amodel in a larger project (European scale or even worldwide scale). In order to reach this 

goal, some issues remain regarding manual aspects of data integration. Moreover, the 

multiple joints required by our relational implementation could be a limiting factor in 

terms of performance. Performance should thus be evaluated in a larger constellation in-

volving more data cubes. On the other hand, the metamodel only manages vector data for 
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spatially discrete analysis. Therefore, extending the metamodel to raster data for the anal-

ysis of spatially continuous phenomena would be an interesting perspective. 

For interoperability purpose, we clearly separated the metamodel from instantiated 

data cubes. This opens the doors to different implementation strategies adapted to these 

different aspects. For example, data cubes could be handled by array databases (MOLAP) 

or relational data bases (ROLAP) while constellation definitions could be handled by doc-

uments stores or RDF graphs to avoid multiple joints. Regarding automatization of data 

integration, it is worth mentioning that RDF graph constellations could easily be con-

nected to other open data of semantic web. 
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