[en] The richness of Taiwanese reef fish species is inversely correlated to latitude as a direct
consequence of the abiotic environment and its effects on benthic habitats.
However, to date, no studies have investigated the variations in the diversity of traits
(FD) linked with the role of these fishes in the ecosystem. FD is usually considered
more sensitive than species richness in detecting early changes in response to disturbances,
and therefore could serve as an indicator of ecological resilience to environmental
changes. Here, we aim to characterize FD in the Taiwanese reef fish fauna and
to document its regional variations. Six traits were used to categorize the 1,484 reef
fish species occurring in four environmentally contrasted regions around Taiwan. The
number of unique trait combinations (FEs), their richness (FRic), their redundancy (FR),
their over‐redundancy (FOR), and their vulnerability (FV) were compared among
these regions. Overall, 416 FEs were identified. Their number decreased from south
to north in step with regional species richness but FRic remained similar among regions.
FR and FOR were higher to the south. At the local scale, variations in FEs and
FRic are in concordance with the worldwide pattern of FD. High‐latitude, impoverished
fish assemblages, offer a range of trait combinations similar to diversified tropical
assemblages. Increasing diversity in the latter mainly contributes to raising FR and
supports already over‐redundant entities. High vulnerability makes many combinations
highly sensitive to species loss, and was higher at intermediate latitudes when
using a fine resolution in trait categories. It suggests that the loss of FEs may first be
characterized by an increase in their vulnerability, a pattern that could have been
overlooked in previous global scale analyses. Overall, this study provides new insights
into reef fish trait biogeography with potential ramifications for ecosystem
functioning.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Allen, G. R. (2008). Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 18, 541–556. https://doi.org/10.1002/aqc.880
Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M., & Watkinson, A. R. (2009). Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proceedings of the Royal Society B-Biological Sciences, 276, 3019–3025. https://doi.org/10.1098/rspb.2009.0339
Beauchard, O., Veríssimo, H., Queirós, A. M., & Herman, P. M. J. (2017). The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecological Indicators, 76, 81–96. https://doi.org/10.1016/j.ecolind.2017.01.011
Bellwood, D. R., & Hughes, T. P. (2001). Regional-scale assembly rules and biodiversity of coral reefs. Science, 292, 1532–1534. https://doi.org/10.1126/science.1058635
Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429, 827–833. https://doi.org/10.1038/nature02691
Bellwood, D. R., Hughes, T. P., & Hoey, A. S. (2006a). Sleeping functional group drives coral-reef recovery. Current Biology, 16, 2434–2439.
Bellwood, D. R., Wainwright, P. C., Fulton, C. J., & Hoey, A. S. (2006b). Functional versatility supports coral reef biodiversity. Proceedings of the Royal Society B-Biological Sciences, 273, 101–107.
Birrell, C. L., McCook, L. J., & Willis, B. L. (2005). Effects of algal turfs and sediment on coral settlement. Marine Pollution Bulletin, 51, 408–414. https://doi.org/10.1016/j.marpolbul.2004.10.022
Bozec, Y. M., Alvarez-Filip, L., & Mumby, P. J. (2015). The dynamics of architectural complexity on coral reefs under climate change. Global Change Biology, 21, 223–235. https://doi.org/10.1111/gcb.12698
Brandl, S. J., Emslie, M. J., & Ceccarelli, D. M. (2016). Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere, 7, e01557. https://doi.org/10.1002/ecs2.1557
Briggs, J. C. (2005). Coral reefs: Conserving the evolutionary sources. Biological Conservation, 126, 297–305. https://doi.org/10.1016/j.biocon.2005.06.018
Briggs, J. C., & Bowen, B. W. (2012). A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography, 39, 12–30. https://doi.org/10.1111/j.1365-2699.2011.02613.x
Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x
Cailliez, F. (1983). The analytical solution of the additive constant problem. Psychometrika, 48, 305–308. https://doi.org/10.1007/BF02294026
Casey, J. M., Baird, A. H., Brandl, S. J., Hoogenboom, M. O., Rizzari, J. R., Frisch, A. J., … Connolly, S. R. (2017). A test of trophic cascade theory: Fish and benthic assemblages across a predator density gradient on coral reefs. Oecologia, 183, 161–175. https://doi.org/10.1007/s00442-016-3753-8
Ceccarelli, D. M., Jones, G. P., & McCook, L. J. (2011). Interactions between herbivorous fish guilds and their influence on algal succession on a coastal coral reef. Journal of Experimental Marine Biology and Ecology, 399, 60–67. https://doi.org/10.1016/j.jembe.2011.01.019
Chapin, F. S. III, Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., … Díaz, S. (2000). Consequences of changing biodiversity. Nature, 405, 234–242. https://doi.org/10.1038/35012241
Cheal, A. J., MacNeil, M. A., Cripps, E., Emslie, M. J., Jonker, M., Schaffelke, B., & Sweatman, H. (2010). Coral-macroalgal phase shifts or reef resilience: Links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs, 29, 1005–1015. https://doi.org/10.1007/s00338-010-0661-y
Chen, C. A. (1999). Analysis of scleractinian distribution in Taiwan indicating a pattern congruent with sea surface temperatures and currents: Examples from Acropora and Faviidae corals. Zoological Studies, 38, 119–129.
Chen, C. (2004a). Checklist of the fishes of Penghu (Vol. 4). COA, Taiwan: Fisheries Research Institute (In Chinese).
Chen, C. A., & Shashank, K. (2009). Taiwan as a connective stepping-stone in the Kuroshio triangle and the conservation of coral ecosystems under the impacts of climate change. Kuroshio Science, 3, 15–22.
Chen, H., Liao, Y. C., Chen, C. Y., Tsai, J. I., Chen, L. S., & Shao, K. T. (2015). Long-term monitoring dataset of fish assemblages impinged at nuclear power plants in northern Taiwan. Scientific Data, 2, 150071. https://doi.org/10.1038/sdata.2015.71
Chen, J. P. (2004b) Biodiversity and conservation of Kenting National Park fish fauna. Kenting Natl Park Rep (In Chinese).
Chen, J. P., Jan, R., Kuo, J. W., Huang, C. H., & Chen, C. Y. (2009). Fish fauna around Green Island. J Natl Park, 19, 23–45 (In Chinese).
Chen, J. P., Shao, K. T., Jan, R. Q., Kuo, J. W., & Chen, J. Y. (2010). Marine fishes in Kenting National Park. Kenting Natl Park Rep (In Chinese).
Chong-Seng, K. M., Nash, K. L., Bellwood, D. R., & Graham, N. A. J. (2014). Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs, 33, 409–419. https://doi.org/10.1007/s00338-014-1134-5
Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and the Environment, 9, 222–228. https://doi.org/10.1890/080216
D’Agata, S., Mouillot, D., Kulbicki, M., Andrefouet, S., Bellwood, D. R., Cinner, J. E., … Vigliola, L. (2014). Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Current Biology, 24, 555–560. https://doi.org/10.1016/j.cub.2014.01.049
Dai, C. F., & Horng, S. (2009). Scleractinia fauna of Taiwan I. The complex group. Taipei, China: National Taiwan University.
Dai, C. F., Soong, K., Chen, C. A., Fan, T. Y., & Hsieh, H. (2005). Status of coral reefs of Taiwan in East Asian Seas region: 2004 (pp 153–164). Japan: Ministry of the Environment.
Darling, E. S., Graham, N. A. J., Januchowski-Hartley, F. A., Nash, K. L., Pratchett, M. S., & Wilson, S. K. (2017). Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs, 36, 561–575. https://doi.org/10.1007/s00338-017-1539-z
Denis, V., Ribas-deulofeu, L., Sturaro, N., Kuo, C. Y., & Chen, C. A. (2017). A functional approach to the structural complexity of coral assemblages based on colony morphological features. Scientific Reports, 7, 9849. https://doi.org/10.1038/s41598-017-10334-w
Dulvy, N. K., Freckleton, R. P., & Polunin, N. V. C. (2004). Coral reef cascades and the indirect effects of predator removal by exploitation. Ecology Letters, 7, 410–416. https://doi.org/10.1111/j.1461-0248.2004.00593.x
Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P., & Joyeux, J. C. (2004). Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. Journal of Biogeography, 31, 1093–1106. https://doi.org/10.1111/j.1365-2699.2004.01044.x
Froese, R., & Pauly, D. (2018) FishBase. http://www.fishbase.org.
Fung, T., Seymour, R. M., & Johnson, C. R. (2011). Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology, 92, 967–982. https://doi.org/10.1890/10-0378.1
Goatley, C. H. R., Bonaldo, R. M., Fox, R. J., & Bellwood, D. R. (2016). Sediments and herbivory as sensitive indicators of coral reef degradation. Ecology and Society, 21, 29. https://doi.org/10.5751/ES-08334-210129
Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D., & Wilson, S. K. (2015). Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature, 518, 94–97. https://doi.org/10.1038/nature14140
Graham, N. A. J., & Nash, K. L. (2013). The importance of structural complexity in coral reef ecosystems. Coral Reefs, 32, 315–326. https://doi.org/10.1007/s00338-012-0984-y
Graham, N. A. J., Wilson, S. K., Jennings, S., Polunin, N. V. C., Robinson, J., Bijoux, J. P., & Daw, T. M. (2007). Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conservation Biology, 21, 1291–1300. https://doi.org/10.1111/j.1523-1739.2007.00754.x
Graham, N. A. J., Chabanet, P., Evans, R. D., Jennings, S., Letourneur, Y., MacNeil, M. A., … Wilson, S. K. (2011). Extinction vulnerability of coral reef fishes. Ecology Letters, 14, 341–348. https://doi.org/10.1111/j.1461-0248.2011.01592.x
Guillemot, N., Kulbicki, M., Chabanet, P., & Vigliola, L. (2011). Functional redundancy patterns reveal non-random assembly rules in a species-rich marine assemblage. PLoS ONE, 6, e26735. https://doi.org/10.1371/journal.pone.0026735
Halpern, B. S., & Floeter, S. R. (2008). Functional diversity responses to changing species richness in reef fish communities. Marine Ecology Progress Series, 364, 147–156. https://doi.org/10.3354/meps07553
Hillebrand, H. (2004). Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series, 273, 251–267. https://doi.org/10.3354/meps273251
Hoey, A. S., & Bellwood, D. R. (2011). Suppression of herbivory by macroalgal density: A critical feedback on coral reefs? Ecology Letters, 14, 267–273. https://doi.org/10.1111/j.1461-0248.2010.01581.x
Holstein, J. (2018). worms: Retriving aphia information from World Register of Marine Species. R package version 0.2.2. https://CRAN.R-project.org/package=worms.
Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B. C., … Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546, 82–90. https://doi.org/10.1038/nature22901
Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., … Torda, G. (2018). Global warming transforms coral reef assemblages. Nature, 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2
Johnson, K. G., Jackson, J. B. C., & Budd, A. F. (2008). Caribbean reef development was independant of coral diversity over 28 million years. Science, 319, 1521–1523.
Jompa, J., & McCook, L. J. (2002). The effects of nutrients and herbivory on competition between a hard coral (Porites cylindrica) and a brown alga (Lobophora variegata). Limnology and Oceanography, 47, 527–534.
Kleypas, J. A., McManus, J. W., & Meñez, L. A. B. (1999). Environmental limits to coral reef development: Where do we draw the line? American Zoologist, 39, 146–159. https://doi.org/10.1093/icb/39.1.146
Kulbicki, M., Parravicini, V., Bellwood, D. R., Arias-Gonzàlez, E., Chabanet, P., Floeter, S. R., … Mouillot, D. (2013). Global biogeography of reef fishes: A hierarchical quantitative delineation of regions. PLoS ONE, 8, e81847. https://doi.org/10.1371/journal.pone.0081847
Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299–305. https://doi.org/10.1890/08-2244.1
Laliberté, E., Legendre, P., & Shipley, B. (2014). FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.
Liu, P., Shao, K. T., Jan, R. Q., Fan, T. Y., Wong, S. L., Hwang, J. S., … Lin, H. J. (2009). A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Marine Environment Research, 68, 106–117. https://doi.org/10.1016/j.marenvres.2009.04.009
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2017). cluster: Cluster analysis basics and extensions. R package version 2.0.6.
Mason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112–118. https://doi.org/10.1111/j.0030-1299.2005.13886.x
McCann, K. S. (2000). The diversity–stability debate. Nature, 405, 228–233. https://doi.org/10.1038/35012234
McClanahan, T. R. (1994). Coral-eating snail Drupella cornus population increases in Kenyan coral reef lagoons. Marine Ecology Progress Series, 115, 131–138. https://doi.org/10.3354/meps115131
McWilliam, M., Hoogenboom, M. O., Baird, A. H., Kuo, C.-Y., Madin, J. S., & Hughes, T. P. (2018). Biogeographical disparity in the functional diversity and redundancy of corals. Proceedings of the National Academy of Sciences United States of America, 115, 3084–3089. https://doi.org/10.1073/pnas.1716643115
Mora, C., Chittaro, P. M., Sale, P. F., Kritzer, J. P., & Ludsin, S. A. (2003). Patterns and processes in reef fish diversity. Nature, 421, 933–936. https://doi.org/10.1038/nature01393
Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., … Thuiller, W. (2013a). Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology, 11, e1001569.
Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., … D. R. (2013b). A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28, 167–177.
Mouillot, D., Villéger, S., Parravicini, V., Kulbicki, M., Arias-González, J. E., Bender, M., … Bellwood, D. R. (2014). Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences United States of America, 111, 13757–13762. https://doi.org/10.1073/pnas.1317625111
Munday, P. L. (2004). Habitat loss, resource specialization, and extinction on coral reefs. Global Change Biology, 10, 1642–1647. https://doi.org/10.1111/j.1365-2486.2004.00839.x
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412
Parravicini, V., Villéger, S., McClanahan, T. R., Arias-González, J. E., Bellwood, D. R., Belmaker, J., … Mouillot, D. (2014). Global mismatch between species richness and vulnerability of reef fish assemblages. Ecology Letters, 17, 1101–1110. https://doi.org/10.1111/ele.12316
Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x
Pratchett, M. S., Hoey, A. S., & Wilson, S. K. (2014). Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Current Opinion in Environmental Sustainability, 7, 37–43. https://doi.org/10.1016/j.cosust.2013.11.022
Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V., & Graham, N. A. J. (2011). Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity, 3, 424–452. https://doi.org/10.3390/d3030424
Purvis, A., & Hector, A. (2000). Getting the measure of biodiversity. Nature, 405, 212–219. https://doi.org/10.1038/35012221
Quimbayo, J. P., Mendes, T. C., Kulbicki, M., Floeter, S. R., & Zapata, F. A. (2017). Unusual reef fish biomass and functional richness at Malpelo, a remote island in the Tropical Eastern Pacific. Environmental Biology of Fishes, 100, 149–162. https://doi.org/10.1007/s10641-016-0557-y
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Raymundo, L. J., Halford, A. R., Maypa, A. P., & Kerr, A. M. (2009). Functionally diverse reef-fish communities ameliorate coral disease. Proceedings of the National Academy of Sciences United States of America, 106, 17067–17070. https://doi.org/10.1073/pnas.0900365106
Ribas-Deulofeu, L., Denis, V., De Palmas, S., Kuo, C. Y., Hsieh, H. J., & Chen, C. A. (2016). Structure of benthic communities along the Taiwan latitudinal gradient. PLoS ONE, 11, e0160601. https://doi.org/10.1371/journal.pone.0160601
Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G., & Hoey, A. S. (2018). Mass coral bleaching causes biotic homogenization of reef fish assemblages. Global Change Biology, 24, 3117–3129. https://doi.org/10.1111/gcb.14119
Shao, K. T. (2018). The fish database of Taiwan. //fishdb.sinica.edu.tw.
Shao, K. T., Chen, J. P., & Wang, S. C. (1999). Biogeography and database of marine fishes in Taiwan waters. Proceedings of the 5th Indo-Pacific Fish Conference, 673–680.
Shao, K. T., Ho, H. C., Lin, P. L., Lee, P. F., Lee, M. Y., Tsai, C. Y., … Yeh, H. M. (2008). A checklist of the fishes of southern Taiwan, northern South China Sea. Raffles Bulletin of Zoology, 19, 233–271.
Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., … Robertson, J. (2007). Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience, 57, 573–583. https://doi.org/10.1641/B570707
Strong, D. R. (1992). Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology, 73, 747–754. https://doi.org/10.2307/1940154
Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M., & Edgar, G. J. (2018). Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature, 560, 92–96. https://doi.org/10.1038/s41586-018-0359-9
Stuart-Smith, R. D., Bates, A. E., Lefcheck, J. S., Duffy, J. E., Baker, S. C., Thomson, R. J., … Edgar, G. J. (2013). Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 501, 539–542. https://doi.org/10.1038/nature12529
Tebbett, S. B., Goatley, C. H. R., & Bellwood, D. R. (2017). Clarifying functional roles: Algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus. Coral Reefs, 36, 803–813. https://doi.org/10.1007/s00338-017-1571-z
Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Vanden, B. E., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466, 1098–1101. https://doi.org/10.1038/nature09329
Villéger, S., Brosse, S., Mouchet, M., Mouillot, D., & Vanni, M. J. (2017). Functional ecology of fish: Current approaches and future challenges. Aquatic Sciences, 79, 783–801. https://doi.org/10.1007/s00027-017-0546-z
Walther, G., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., … Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389–395. https://doi.org/10.1038/416389a
Wang, J., & Chern, C. S. (1988). On the Kuroshio branch in the Taiwan strait during wintertime. Progress in Oceanography, 21, 469–491. https://doi.org/10.1016/0079-6611(88)90022-5
Wilson, S. K., Fisher, R., Pratchett, M. S., Graham, N. A. J., Dulvy, N. K., Turner, R. A., … Polunin, N. V. C. (2010). Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecological Applications, 20, 442–451. https://doi.org/10.1890/08-2205.1
Wong, J. S. Y., Chan, Y. K. S., Ng, C. S. L., Tun, K. P. P., Darling, E. S., & Huang, D. (2018). Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs, 37, 737–750. https://doi.org/10.1007/s00338-018-1698-6
WoRMS Editorial Board. (2018). World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.