Ryan, J. C.; Institute at Brown for Environment and Society, Brown University, Providence, RI, United States
Smith, L. C.; Institute at Brown for Environment and Society, Brown University, Providence, RI, United States, Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, United States
Wu, M.; Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, United States
Cooley, S. W.; Institute at Brown for Environment and Society, Brown University, Providence, RI, United States, Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, United States
Miège, C.; Department of Geography Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
Montgomery, L. N.; Department of Atmospheric and Oceanic Science, University of Colorado Boulder, Boulder, CO, United States
Koenig, L. S.; National Snow and Ice Data Center, University of Colorado Boulder, Boulder, CO, United States
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Université de Liège - ULiège > Sphères
van den Broeke, M. R.; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
Evaluation of CloudSat's Cloud-Profiling Radar for Mapping Snowfall Rates Across the Greenland Ice Sheet
Publication date :
January 2020
Journal title :
Journal of Geophysical Research. Atmospheres
ISSN :
2169-897X
eISSN :
2169-8996
Publisher :
Blackwell Publishing
Volume :
125
Issue :
4
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Ahlstrøm, A. P., Petersen, D., Langen, P. L., Citterio, M., & Box, J. E. (2017). Abrupt shift in the observed runoff from the southwestern Greenland ice sheet. Science Advances, 3(12), 1, e1701169–8. https://doi.org/10.1126/sciadv.1701169
Behrangi, A., Christensen, M., Richardson, M., Lebstock, M., Stephens, G., Huffman, G. J., Bolvin, D. T., Adler, R. F., Gardner, A. S., Lambrigtsen, B., & Fetzer, E. (2016). Status of high-latitude precipitation estimates from observations and reanalyses. Journal of Geophysical Research-Atmospheres, 121(11), 6472–6488. https://doi.org/10.1002/2015JD023257
Bennartz, R., Fell, F., Pettersen, C., Shupe, M. D., & Schuettemeyer, D. (2019). Spatial and temporal variability of snowfall over Greenland from CloudSat observations. Atmospheric Chemistry and Physics, 19, 8101–8121. https://doi.org/10.5194/acp-19-8101-2019
Box, J. E., Bromwich, D. H., Veenhuis, B. A., Bai, L. S., Stroeve, J. C., Rogers, J. C., Steffen, K., Haran, T., & Wang, S. H. (2006). Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output. Journal of Climate, 19(12), 2783–2800. https://doi.org/10.1175/JCLI3738.1
Buchardt, S. L., Clausen, H. B., Vinther, B. M., & Dahl-Jensen, D. (2012). Investigating the past and recent δ18O-accumulation relationship seen in Greenland ice cores. Climate of the Past, 8(6), 2053–2059. https://doi.org/10.5194/cp-8-2053-2012
Cao, Q., Hong, Y., Chen, S., Gourley, J. J., Zhang, J., & Kirstetter, P. E. (2014). Snowfall Detectability of NASA's CloudSat: the first cross-investigation of its 2C-Snow-Profile product and national multi-sensor mosaic QPE (NMQ) snowfall data. Progress In Electromagnetics Research, 148, 55–61. https://doi.org/10.2528/pier14030405
Castellani, B. B., Shupe, M. D., Hudak, D. R., & Sheppard, B. E. (2015). The annual cycle of snowfall at Summit, Greenland. Journal of Geophysical Research-Atmospheres, 120(13), 6654–6668. https://doi.org/10.1002/2015JD023072
Chen, X., Zhang, X., Church, J. A., Watson, C. S., King, M. A., Monselesan, D., Legresy, B., & Harig, C. (2017). The increasing rate of global mean sea-level rise during 1993–2014. Nature Climate Change, 7(7), 492–495. https://doi.org/10.1038/nclimate3325
Cuffey, K. M., & Steig, E. (1998). Isotopic diffusion in polar firn: implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland. Journal of Glaciology, 44(1), 273–284. https://doi.org/10.3189/S0022143000002616
Dibb, J. E., & Fahnestock, M. (2004). Snow accumulation, surface height change, and firn densification at Summit, Greenland: Insights from 2 years of in situ observation. Journal of Geophysical Research, 109, D24113. https://doi.org/10.1029/2003JD004300
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Bamber, J. L., Box, J. E., & Bales, R. C. (2009). Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophysical Research Letters, 36, L12501. https://doi.org/10.1029/2009GL038110
Fausto, R. S., Box, J. E., Vandecrux, B., van As, D., Steffen, K., MacFerrin, M. J., Machguth, H., Colgan, W., Koenig, L. S., McGrath, D., Charalampidis, C., & Braithwaite, R. J. (2018). A snow density dataset for improving surface boundary conditions in Greenland Ice Sheet firn modeling. Frontiers in Earth Science, 6, 1–10. https://doi.org/10.3389/feart.2018.00051
Fettweis, X., Franco, B., Tedesco, M., Van Angelen, J. H., Lenaerts, J. T. M., Van Den Broeke, M. R., & Gallée, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7(2), 469–489. https://doi.org/10.5194/tc-7-469-2013
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., & Gallée, H. (2017). Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11(2), 1015–1033. https://doi.org/10.5194/tc-11-1015-2017
Fyke, J. G., Vizcaíno, M., Lipscomb, W., & Price, S. (2014). Future climate warming increases Greenland ice sheet surface mass balance variability. Geophysical Research Letters, 41(2), 470–475. https://doi.org/10.1002/2013GL058172
Hawley, R. L., Courville, Z. R., Kehrl, L. M., Lutz, E. R., Osterberg, E. C., Overly, T. B., & Wong, G. J. (2014). Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland Inland Traverse. Journal of Glaciology, 60(220), 375–382. https://doi.org/10.3189/2014JoG13J141
Herron, M. M., & Langway, C. C. (1980). Firn densification: an empirical model. Journal of Glaciology, 25(93), 87–89. https://doi.org/10.3189/S0022143000015239
Hiley, M. J., Kulie, M. S., & Bennartz, R. (2011). Uncertainty analysis for CloudSat snowfall retrievals. Journal of Applied Meteorology and Climatology, 50(2), 399–418. https://doi.org/10.1175/2010JAMC2505.1
Hudak, D., Rodriguez, P., & Donaldson, N. (2008). Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network. Journal of Geophysical Research, 113, D00A07. https://doi.org/10.1029/2008JD009992
Iizuka, Y., Miyamoto, A., Hori, A., Matoba, S., Furukawa, R., Saito, T., Fujita, S., Hirabayashi, M., Yamaguchi, S., Fujita, K., & Takeuchi, N. (2017). A firn densification process in the high accumulation dome of southeastern Greenland. Arctic, Antarctic, and Alpine Research, 49(1), 13–27. https://doi.org/10.1657/AAAR0016-034
Johansson, E., Berglund, S., Lindborg, T., Petrone, J., Van As, D., Gustafsson, L. G., Näslund, J.-O., & Laudon, H. (2015). Hydrological and meteorological investigations in a periglacial lake catchment near Kangerlussuaq, west Greenland - Presentation of a new multi-parameter data set. Earth System Science Data, 7(1), 93–108. https://doi.org/10.5194/essd-7-93-2015
Kay, J. E., L'Ecuyer, T., Pendergrass, A., Chepfer, H., Guzman, R., & Yettella, V. (2018). Scale-aware and definition-aware evaluation of modeled near-surface precipitation frequency using CloudSat observations. Journal of Geophysical Research-Atmospheres, 123(8), 4294–4309. https://doi.org/10.1002/2017JD028213
Koenig, L. S., Ivanoff, A., Alexander, P. M., MacGregor, J. A., Fettweis, X., Panzer, B., Paden, J. D., Forster, R. R., Das, I., McConnell, J. R., Tedesco, M., Leuschen, C., & Gogineni, P. (2016). Annual Greenland accumulation rates (2009–2012) from airborne snow radar. The Cryosphere, 10(4), 1739–1752. https://doi.org/10.5194/tc-10-1739-2016
Kulie, M. S., & Bennartz, R. (2009). Utilizing spaceborne radars to retrieve dry Snowfall. Journal of Applied Meteorology and Climatology, 48(12), 2564–2580. https://doi.org/10.1175/2009JAMC2193.1
Lemonnier, F., Madeleine, J. B., Claud, C., Genthon, C., Durán-Alarcón, C., Palerme, C., Berne, A., Souverijns, N., van Lipzig, N., Gorodetskaya, I. V., L'Ecuyer, T., & Wood, N. (2019). Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica. The Cryosphere, 13(3), 943–954. https://doi.org/10.5194/tc-13-943-2019
Lewis, G., Osterberg, E., Hawley, R., Whitmore, B., Marshall, H. P., & Box, J. (2017). Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar. The Cryosphere, 11(2), 773–788. https://doi.org/10.5194/tc-11-773-2017
Liu, G. (2008). Deriving snow cloud characteristics from CloudSat observations. Journal of Geophysical Research, 113, D00A09. https://doi.org/10.1029/2007JD009766
Macguth, H., Thomsen, H. H., Weidick, A., Ahlstrøm, A. P., Abermann, J., Andersen, M. L., Andersen, S. B., Bjørk, A. A., Box, J. E., Braithwaite, R. J., Bøggild, C. E., Citterio, M., Clement, P., Colgan, W., Fausto, R. S., Gleie, K., Gubler, S., Hasholt, B., Hynek, B., Knudsen, N. T., Larsen, S. H., Mernild, S. H., Oerlemans, J., Oerter, H., Olesen, O. B., Smeets, C. J. P. P., Steffen, K., Stober, M., Sugiyama, S., van As, D., van den Broeke, M. R., & van de Wal, R. S. W. (2016). Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers. Journal of Glaciology, 62(235), 861–887. https://doi.org/10.1017/jog.2016.75
Matrosov, S. Y., & Heymsfield, A. J. (2008). Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurements. Journal of Geophysical Research, 113, D00A05. https://doi.org/10.1029/2007JD009633
McIlhattan, E. A., Pettersen, C., Wood, N. B., & L'Ecuyer, T. S. (2019). Satellite observations of snowfall regimes over the Greenland Ice Sheet. The Cryosphere Discussions. https://doi.org/10.5194/tc-2019-223
Medley, B., Joughin, I., Das, S. B., Steig, E. J., Conway, H., Gogineni, S., Criscitiello, A. S., McConnell, J. R., Smith, B. E., van den Broeke, M. R., Lenaerts, J. T. M., Bromwich, D. H., & Nicolas, J. P. (2013). Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophysical Research Letters, 40(14), 3649–3654. https://doi.org/10.1002/grl.50706
Miège, C., Forster, R. R., Box, J. E., Burgess, E. W., Mcconnell, J. R., Pasteris, D. R., & Spikes, V. B. (2013). Southeast Greenland high accumulation rates derived from firn cores and ground-penetrating radar. Annals of Glaciology, 54(63), 322–332. https://doi.org/10.3189/2013AoG63A358
Milani, L., Kulie, M. S., Casella, D., Dietrich, S., L'Ecuyer, T. S., Panegrossi, G., Porcù, F., Sanò, P., & Wood, N. B. (2018). CloudSat snowfall estimates over Antarctica and the Southern Ocean: An assessment of independent retrieval methodologies and multi-year snowfall analysis. Atmospheric Research, 213, 121–135. https://doi.org/10.1016/j.atmosres.2018.05.015
Mosley-Thompson, E., McConnell, J. R., Bales, R. C., Li, Z., Lin, P., Steffen, K., Thompson, L. G., Edwards, R., & Bathke, D. (2001). Local to regional-scale variability of annual net accumulation on the Greenland ice sheet from PARCA cores Regional Climate Assessment opportunity to assess local to regional variability of annual accumulation rates over the Greenland Ice Sheet. Journal of Geophysical Research, 106(D24), 33,839–33,851. https://doi.org/10.1029/2001JD900067
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., & Wood, M. (2019). Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences, 116(19), 9239–9244. https://doi.org/10.1073/pnas.1904242116
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., & van As, D. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2—Part 1: Greenland (1958–2016). The Cryosphere, 2013, 811–831. https://doi.org/10.5194/tc-12-811-2018
Overly, T. B., Hawley, R. L., Helm, V., Morris, E. M., & Chaudhary, R. N. (2016). Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements. The Cryosphere, 10(4), 1679–1694. https://doi.org/10.5194/tc-10-1679-2016
Palerme, C., Claud, C., Dufour, A., Genthon, C., Wood, N. B., & L'Ecuyer, T. (2017). Evaluation of Antarctic snowfall in global meteorological reanalyses. Atmospheric Research, 190, 104–112. https://doi.org/10.1016/j.atmosres.2017.02.015
Palerme, C., Claud, C., Wood, N. B., L'Ecuyer, T., & Genthon, C. (2019). How does ground clutter affect CloudSat snowfall retrievals over ice sheets? IEEE Geoscience and Remote Sensing Letters, 16(3), 342–346. https://doi.org/10.1109/LGRS.2018.2875007
Palerme, C., Genthon, C., Claud, C., Kay, J. E., Wood, N. B., & L'Ecuyer, T. (2017). Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dynamics, 48(1–2), 225–239. https://doi.org/10.1007/s00382-016-3071-1
Palerme, C., Kay, J. E., Genthon, C., L'Ecuyer, T., Wood, N. B., & Claud, C. (2014). How much snow falls on the Antarctic ice sheet? The Cryosphere, 8(4), 1577–1587. https://doi.org/10.5194/tc-8-1577-2014
Pettersen, C., Bennartz, R., Merrelli, A. J., Shupe, M. D., Turner, D. D., & Walden, V. P. (2018). Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations. Atmospheric Chemistry and Physics, 18(7), 4715–4735. https://doi.org/10.5194/acp-18-4715-2018
Rodriguez-Morales, F., Gogineni, S., Leuschen, C. J., Paden, J. D., Li, J., Lewis, C. C., Panzer, B., Gomez-Garcia, D., Patel, A., Byers, K., Crowe, R., Player, K., Hale, R., Arnold, E., Smith, L., Gifford, C., Braaten, D., & Panton, C. (2014). Advanced multifrequency radar instrumentation for polar Research. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2824–2842. https://doi.org/10.1109/TGRS.2013.2266415
Ryan, J. C., Smith, L. C., Van As, D., Cooley, S. W., Cooper, M. G., Pitcher, L. H., & Hubbard, A. (2019). Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Science Advances, 5(3), eaav3738. https://doi.org/10.1126/sciadv.aav3738
Shupe, M. D., Turner, D. D., Walden, V. P., Bennartz, R., Cadeddu, M. P., Castellani, B. B., Cox, C. J., Hudak, D. R., Kulie, M. S., Miller, N. B., Neely, R. R., Neff, W. D., & Rowe, P. M. (2013). High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bulletin of the American Meteorological Society, 94, 169–186. https://doi.org/10.1175/BAMS-D-11-00249.1
Skofronick-Jackson, G., Kulie, M., Milani, L., Munchak, S. J., Wood, N. B., & Levizzani, V. (2019). Satellite estimation of falling snow: A global precipitation measurement (GPM) Core Observatory perspective. Journal of Applied Meteorology and Climatology, 58, 1429–1448. https://doi.org/10.1175/JAMC-D-18-0124.1
Smeets, P. C. J. P., Kuipers Munneke, P., van As, D., van den Broeke, M. R., Boot, W., Oerlemans, H., Snellen, H., Reijmer, C. H., & van de Wal, R. S. W. (2018). The K-transect in west Greenland: Automatic weather station data (1993–2016). Arctic, Antarctic, and Alpine Research, 50(1), S100002. https://doi.org/10.1080/15230430.2017.1420954
Souverijns, N., Gossart, A., Lhermitte, S., Gorodetskaya, I. V., Grazioli, J., Berne, A., Duran-Alarcon, C., Boudevillain, B., Genthon, C., Scarchilli, C., & van Lipzig, N. P. M. (2018). Evaluation of the CloudSat surface snowfall product over Antarctica using ground-based precipitation radars. The Cryosphere, 12(12), 3775–3789. https://doi.org/10.5194/tc-12-3775-2018
Steffen, K., & Box, J. (2001). Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995-1999. Journal of Geophysical Research, 106(12), 33,951–33,964. https://doi.org/0148-0227/01/2001JD900161$09.00
Stephens, G., Winker, D., Pelon, J., Trepte, C., Vane, D., Yuhas, C., L'Ecuyer, T., & Lebsock, M. (2018). Cloudsat and Calipso within the A-Train: Ten years of actively observing the earth system. Bulletin of the American Meteorological Society, 99(3), 569–581. https://doi.org/10.1175/BAMS-D-16-0324.1
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z. E., Illingworth, A. J., O'connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu, C., & the CloudSat Science Team (2002). The CloudSat mission and the A-Train - A new dimension of space-based observations of clouds and precipitation. Bulletin of the American Meteorological Society, 83(12), 1771–1790. https://doi.org/10.1175/Bams-83-12-1771
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M., Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J., Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang, Z., & Marchand, R. (2008). CloudSat mission: Performance and early science after the first year of operation. Journal of Geophysical Research, 113, D00A18. https://doi.org/10.1029/2008JD009982
Tanelli, S., Durden, S. L., Im, E., Pak, K. S., Reinke, D. G., Partain, P., Haynes, J. M., & Marchand, R. T. (2008). CloudSat's cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Transactions on Geoscience and Remote Sensing, 46(11), 3560–3573. https://doi.org/10.1109/TGRS.2008.2002030
van den Broeke, M. R., Box, J., Fettweis, X., Hanna, E., Noël, B., Tedesco, M., van As, D., van de Berg, W. J., & van Kampenhout, L. (2017). Greenland Ice Sheet surface mass loss: Recent developments in observation and modeling. Current Climate Change Reports, 3(4), 345–356. https://doi.org/10.1007/s40641-017-0084-8
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., Jan Van De Berg, W., van Meijgaard, E., & Wouters, B. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10(5), 1933–1946. https://doi.org/10.5194/tc-10-1933-2016
van Tricht, K., Lhermitte, S., Gorodetskaya, I. V., & Van Lipzig, N. P. M. (2016). Improving satellite-retrieved surface radiative fluxes in polar regions using a smart sampling approach. The Cryosphere, 10(5), 2379–2397. https://doi.org/10.5194/tc-10-2379-2016
Vernon, C. L., Bamber, J. L., Box, J. E., van den Broeke, M. R., Fettweis, X., Hanna, E., & Huybrechts, P. (2013). Surface mass balance model intercomparison for the Greenland ice sheet. The Cryosphere, 7(2), 599–614. https://doi.org/10.5194/tc-7-599-2013
Vizcaíno, M., Lipscomb, W. H., Sacks, W. J., & van den Broeke, M. (2014). Greenland surface mass balance as simulated by the Community Earth System Model. Part II: Twenty-First-Century Changes. Journal of Climate, 27(1), 215–226. https://doi.org/10.1175/JCLI-D-12-00588.1
Wood, N. B., L'Ecuyer, T. S., Heymsfield, A. J., Stephen, G. L., Hudak, D. R., & Rodriguez, P. (2014). Estimating snow microphysical properties using collocated multisensor observations. Journal of Geophysical Research-Atmospheres, 119(14), 8941–8961. https://doi.org/10.1002/2013JD021303