European Commission. Study on the EU’s list of Critical Raw Materials—Final Report; European Commission: Brussels, Belgium, 2020.
Falagán, C.; Grail, B.M.; Johnson, D.B. New approaches for extracting and recovering metals from mine tailings. Miner. Eng. 2017, 106, 71–78, doi:10.1016/j.mineng.2016.10.008.
Ceniceros‐Gómez, A.E.; Macías‐Macías, K.Y.; De La Cruz‐Moreno, J.E.; Gutiérrez‐Ruiz, M.E.; Martínez‐Jardines, L.G. Characterization of mining tailings in México for the possible recovery of strategic elements. J. South Am. Earth Sci. 2018, 88, 72–79, doi:10.1016/j.jsames.2018.08.013.
Martinez, J.M.R.; Hidalgo, M.; Rey, J.; Garrido, J.; Kohfahl, C.; Benavente, J.; De Rojas, D.H.F. A multidisciplinary characterization of a tailings pond in the Linares‐La Carolina mining district, Spain. J. Geochem. Explor. 2016, 162, 62–71, doi:10.1016/j.gex-plo.2015.12.013.
Helser, J.; Cappuyns, V. Trace elements leaching from Pb‐Zn mine waste (Plombières, Belgium) and environmental implications. J. Geochem. Explor. 2020, 106659, 106659, doi:10.1016/j.gexplo.2020.106659.
Environment Agency. Human Health Toxicological Assessment of Contaminants in Soil; (England and Wales); Environment Agency: Bristol, UK, 2009.
Kuhn, K.; Meima, J.A.; Kuhn Characterization and Economic Potential of Historic Tailings from Gravity Separation: Implications from a Mine Waste Dump (Pb‐Ag) in the Harz Mountains Mining District, Germany. Minerals 2019, 9, 303, doi:10.3390/min9050303.
Lottermoser, B.G. Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer: Berlin/Heidelberg, Ger-many, 2003; p. 400.
Terrones‐Saeta, J.M.; Suárez‐Macías, J.; Iglesias‐Godino, F.J.; Corpas‐Iglesias, F.A. Development of Porous Asphalt with Bitu-men Emulsion, Electric arc Furnace Slag and Cellulose Fibers for Medium Traffic Roads. Minerals 2020, 10, 872, doi:10.3390/min10100872.
Lam, E.J.; Zetola, V.; Ramírez, Y.; Montofré, Í.L.; Pereira, F. Making Paving Stones from Copper Mine Tailings as Aggregates. Int. J. Environ. Res. Public Health 2020, 17, 2448.
Suárez‐Macías, J.; Terrones‐Saeta, J.M.; Iglesias‐Godino, F.J.; Corpas‐Iglesias, F.A. Retention of Contaminants Elements from Tailings from Lead Mine Washing Plants in Ceramics for Bricks. Minerals 2020, 10, 576, doi:10.3390/min10060576.
Büttner, P.; Osbahr, I.; Zimmermann, R.; Leißner, T.; Satge, L.; Gutzmer, J. Recovery potential of flotation tailings assessed by spatial modelling of automated mineralogy data. Miner. Eng. 2018, 116, 143–151, doi:10.1016/j.mineng.2017.09.008.
Thomassen, B. The Blyklippen lead‐zinc mine at Mesters Vig, East Greenland. Geol. Ore 2005, 5, 12.
Sukhoon, P.; Million, T.; Hyeong‐Ki, K. The Applications of Mine Tailings to Develop Low‐Cost UHPC; International Interactive Symposium on Ultra‐High Performance Concrete; Iowa State University Digital Press: Iowa, USA, 2016; doi:10.21838/uhpc.2016.92.
Moran, P.; Christoffersen, L.; Gillow, J.; Hay, M. Cemented Tailings Backfill—It’s Better, Now Prove It! In Proceedings of the SME Annual Meeting, Denver, CO, USA, 24–27 February 2013.
Andrews, W.J.; Moreno, C.J.G.; Nairn, R.W. Potential recovery of aluminum, titanium, lead, and zinc from tailings in the abandoned Picher mining district of Oklahoma. Miner. Econ. 2013, 26, 61–69, doi:10.1007/s13563‐013‐0031‐7.
Mehta, N.; Dino, G.A.; Passarella, I.; Ajmone‐Marsan, F.; Rossetti, P.; De Luca, D.A. Assessment of the Possible Reuse of Extrac-tive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy. Sustainability 2020, 12, 2471, doi:10.3390/su12062471.
Pioro, L.; Pioro, I. Reprocessing of metallurgical slag into materials for the building industry. Waste Manag. 2004, 24, 371–379, doi:10.1016/s0956‐053x(03)00071‐0.
Kucha, H.; Martens, A.; Ottenburgs, R.; De Vos, W.; Viaene, W. Primary minerals of Zn‐Pb mining and metallurgical dumps and their environmental behavior at Plombières, Belgium. Environ. Earth Sci. 1996, 27, 1–15, doi:10.1007/bf00770598.
Dejonghe, L.; Ladeuze, F.; Jans, D. Atlas des gisementsplombo‐zincifères du Synclinorium de Verviers (Est de laBelgique). Mé-moire l’Explication Géologique Minières Belgique 1993, 33, 1–483.
Blasenbauer, D.; Bogush, A.; Carvalho, T.; Cleall, P.; Cormio, C.; Guglietta, D.; Fellner, J.; Fernández‐Alonso, M.; Heuss‐Aßbich-ler, S.; Huber, F.; et al. Knowledge base to facilitate anthropogenic resource assessment. Deliverable of COST Action Mining the European Anthrothropogenic Resource Assessment. Zenodo 2020, doi:10.5281/zenodo.3739164.
Renson, V.; Fagel, N.; Mattielli, N.; Nekrassoff, S.; Streel, M.; De Vleeschouwer, F. Roman road pollution assessed by elemental and lead isotope geochemistry in East Belgium. Appl. Geochem. 2008, 23, 3253–3266, doi:10.1016/j.apgeochem.2008.06.010.
Dejonghe, L. Plombʹhier a bonnes mines, Montzen: ASBLE space Culture‐Plombières; ASBLE space Culture: Montzen, Belgium, 2014. 1, 12.
Dejonghe, L. Zinc‐lead deposits of Belgium. Ore Geol. Rev. 1998, 12, 329–354.
Blondieau, M.; Polrot, F. Les travaux miniers de schimper, siège sud de la mine du bleyberg (Plombières,Belgique):Plomb, zinc mais aussi argent: Histoire, minéralisations, production d’argent, impact dans le paysage. Geol. Surv. Belg. 2011, 310, 57.
Rainbows, P.S. Trace Metals in the Environment and Living Organisms: The British Isles as a Case Study; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; p. 741.
Heijlen, W.; Muchez, P.; Banks, D.A. Origin and evolution of high‐salinity, Zn‐Pb mineralizing fluids in the Variscides of Bel-gium. Miner. Depos. 2001, 36, 165–176.
Dejonghe. L.; Boni., M. The “calamine‐type zinc‐lead deposits in Belgium and West Germany: a product of Mesozoic palaeo-weathering processes. Geol. Belg. 2005, 8, 3–14.
Muchez, P.; Heijlen, W.; Banks, D.; Blundell Boni, M.; Grandia, F. Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol. Rev. 2005, 27, 241–267.
Jans, D.; Dejonghe, L. Les gisements plombo‐zinciferes de l’est de la belgique. Chron. Rech. Minière 1983, 470, 3–24.
Coppola, V.; Boni, M.; Gilg, H.A.; Balassone, G.; Dejonghe, L. The “calamine” non‐sulfide Zn–Pb deposits of Belgium: Petro-graphical, mineralogical and geochemical characterization. Ore Geol. Rev. 2008, 33, 187–210.
Abzalov, M.; Newman, C. Sampling of the mineralised tailings dumps ? case study of the Mount Morgan project, central Queensland, Australia. Appl. Earth Sci. 2017, 126, 1–5, doi:10.1080/03717453.2017.1343927.
Service Public de Wallonie, 2019, geoportail.wallonie.be/walonmap
Nikonow, W.; Rammlmair, D.; Furche, M. A multidisciplinary approach considering geochemical reorganization and internal structure of tailings impoundments for metal exploration. Appl. Geochem. 2019, 104, 51–59, doi:10.1016/j.apgeochem.2019.03.014.
Lam, E.J.; Carle, R.; González, R.; Montofré; Í, L.; Veloso, E.A.; Bernardo, A.; Álvarez, F.A. A Methodology Based on Magnetic Susceptibility to Characterize Copper Mine Tailings. Minerals 2020, 10, 939.
Loke, M.H. Tutorial: 2‐D and 3‐D electrical imaging surveys. Course Notes for USGS Workshop 2‐D and 3‐D Inversion and Modeling of Surface and Drill hole Resistivity Data; Course Notes for USGS Workshop, Torrs: CT, USA, 2004.
Dahlin, T.; Zhou, B. Multiple‐gradient array measurements for multichannel 2D resistivity imaging. Near Surf. Geophys. 2005, 4, 113–123, doi:10.3997/1873‐0604.2005037.
Günther, T.; Rücker, C.; Spitzer, K. Three‐dimensional modelling and inversion of dc resistivity data incorporating topography ‐ II. Inversion. Geophys. J. Int. 2006, 166, 506–517, doi:10.1111/j.1365‐246x.2006.03011.x.
Caterina, D.; Beaujean, J.; Robert, T.; Nguyen, F. A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surf. Geophys. 2013, 11, 639–658, doi:10.3997/1873‐0604.2013022.
Oldenburg, D.W.; Li, Y. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 1999, 64, 403–416, doi:10.1190/1.1444545.
Baskaran, R.; Selvakumaran, T.; Subramanian, V. Aerosol test facility for fast reactor safety studies. Indian J. Pure Appl. Phys. 2004, 42, 873–878.
Goossens, D. Techniques to measure grain‐size distributions of loamy sediments: a comparative study of ten instruments for wet analysis. Sedimentology 2007, 55, 65–96, doi:10.1111/j.1365‐3091.2007.00893.x.
Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445.
Shepard, F.P. Nomenclature Based on Sand‐silt‐clay Ratios. J. Sediment. Res. 2003, 24, 151–158, doi:10.1306/D4269774‐2B26‐11D7‐ 8648000102C1865D.
Jackson, P.J.; Packham, R.F.; Richards, W.N. The Examination of Organic flocculants and Coagulant Aids 8th Methods of Analysing Proprietary Chemicals Used in Water Supply Treatment Processes. Water Research Centre. Technical Report TR6; Stevenage Labora-tory: Stevenage, UK, 1975.
Frederickx, L. The Influence of Measurement Techniques on the Grain Size Distribution of the Boom Clay Formation. SCK‐CEN I‐0641, Mol, Belgium.
El Ouahabi, M.; Chêne, G.; Strivay, D.; Auwera, J.V.; Hubert‐Ferrari, A. Inter‐technique comparison of PIXE and XRF for lake sediments. J. Anal. At. Spectrom. 2018, 33, 883–892, doi:10.1039/c8ja00019k.
Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN—A new fundamental parameter based Rietveld program for laboratory X‐ray sources, its use in quantitative analysis and structure investigations. CPD Newsletter, Commission of Powder Diffraction. Int. Union Crystallogr. 1998, 20, 5–8.
Lauwers, M. Geotechnische Studie van een Mijn te Plombières; Departement of Civil Engineering, Section Mining and Geophysical Engineering:, KU Leuven: Leuven, Belgium, 1992.
Santini, T.; Banning, N.C. Alkaline tailings as novel soil forming substrates: Reframing perspectives on mining and refining wastes. Hydrometallurgy 2016, 164, 38–47, doi:10.1016/j.hydromet.2016.04.011.
García‐Giménez, R.; Jiménez‐Ballesta, R. Mine tailings influencing soil contamination by potentially toxic elements. Environ. Earth Sci. 2017, 76, 51, doi:10.1007/s12665‐016‐6376‐9.
Dominy, S.C.; Platten, I.M.; Raine, M.D. Grade and geological continuity in high‐nugget effect gold–quartz reefs: implications for resource estimation and reporting. Appl. Earth Sci. 2003, 112, 239–259, doi:10.1179/037174503225003116.
Jauniaux, M. Moresnet où l’histoire et la minéralogie se mêlent. Lithorama 2007, 8, 10.
Zhao, P.; Lu, L.; Liu, X.; De La Torre, A.G.; Cheng, X. Error Analysis and Correction for Quantitative Phase Analysis Based on Rietveld‐Internal Standard Method: Whether the Minor Phases Can Be Ignored? Crystals 2018, 8, 110, doi:10.3390/cryst8030110.
Jacobs, J.A.; Lehr, J.H.; Testa, S.M. Acid Mine Drainage, Rock Drainage, and Acid Sulfate Soils: Causes, Assessment, Prediction, Pre-vention, and Remediation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; p. 504.
Leblanc, M.; Morales, J.A.; Borrego, J.; Elbaz‐Poulichet, F. 4,500‐year‐old mining pollution in southwestern spain: Long‐term implications for modern mining pollution. Econ. Geol. 2000, 95, 655–662, doi:10.2113/gsecongeo.95.3.655.
Pascaud, G.; Leveque, T.; Soubrand, M.; Boussen, S.; Joussein, E.; Dumat, C. Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility. Environ. Sci. Pollut. Res. 2014, 21, 4254–4264, doi:10.1007/s11356‐013‐2297‐2.
Moles, N.; Smyth, D.; Maher, C.; Beattie, E.; Kelly, M. Dispersion of cerussite‐rich tailings and plant uptake of heavy metals at historical lead mines near Newtownards, Northern Ireland. Appl. Earth Sci. 2004, 113, 21–30, doi:10.1179/037174504225004439.
Kicińska, A. Physical and chemical characteristics of slag produced during Pb refining and the environmental risk associated with the storage of slag. Environ. Geochem. Health 2020, 1–19, doi:10.1007/s10653‐020‐00738‐5.
PERC. Reporting Standard. Pan‐European Standard for Reporting of Exploration Results, Mineral Resources and Reserves; The Pan‐ European Reserves and Resources Reporting Committee: Brussels, Belgium. Available online:https://inspire.ec.europa.eu/co-delist/ClassificationAndQuantificationFrameworkValue/PERC (accessed on 16 February, 2017)
Liu, Q.; Li, Y.; Zhao, G. The Latest Research Progress of Green Building Materials in Lead and Zinc Tailings. IOP Conf. Ser. Earth Environ. Sci. 2019, 267, 052024, doi:10.1088/1755‐1315/267/5/052024.
Kuranchie, F.A.; Shukla, S.K.; Habibi, D. Utilisation of iron ore mine tailings for the production of geopolymer bricks. Int. J. Mining, Reclam. Environ. 2014, 30, 92–114, doi:10.1080/17480930.2014.993834.
Fontes, W.C.; De Carvalho, J.M.F.; Andrade, L.C.; Segadães, A.M.; Peixoto, R.A. Assessment of the use potential of iron ore tailings in the manufacture of ceramic tiles: From tailings‐dams to “brown porcelain.” Constr. Build. Mater. 2019, 206, 111–121, doi:10.1016/j.conbuildmat.2019.02.052.
Achternbosch, M.; Bräutigam, K.‐R.; Gleis, M.; Hartlieb, N.; Kupsch, C.; Richers, U.; Stemmermann, P. Heavy Metals in Cement and Concrete Resulting from the Co‐Incineration of Wastes in Cement Kilns with Regard to the Legitimacy of Waste Utilisation, FZKA 6923; Forschungszentrum: Karlsruhe, Germany, 2003; p. 200.
Belgium Legislave on Regulation on Sustainable Management of Material Cycles and Waste Materials (VLAREMA), Decree: Flanders, Belgium, p. 187. Available online: https://navigator.emis.vito.be/mijn‐navigator?woId=44696 (accessed on 17 February, 2012)
Dondi, Michele. (2003). Technological and compositional requirements of clay materials for ceramic tiles. Proc. 12th Int. Clay Conference, Bahía Blanca, Argentina, 2001. doi:23‐30. 10.1016/B978‐044450945‐1/50092‐0.
Dittmann, J.; Willenbacher, N. Microstructural investigations and mechanical properties of macroporous ceramic materials from capillary suspensions. J. Am. Ceram. Soc. 2014, 97, 3787–3792.
Kambale, K.; Mahajan, A.; Butee, S.P. Effect of grain size on the properties of ceramics. Met. Powder Rep. 2019, 74, 130–136, doi:10.1016/j.mprp.2019.04.060.
Veiga Simão, F.; Chambart, H.; Vandemeulebroeke, L.; Cappuyns, V. Sustainable use of sulfidic tailing residues in the production of ceramic roof tiles [Abstract]. In Programme and Book of Abstracts of the 13th Conference for Young Scientists in Ceramics (CYSC‐2019); Srdić, V.V., Ed.; Faculty of Technology, University of Novi Sad: Novi Sad, Serbia, 2019; pp. 97–98.