Nam Y-W, Cui M, Orfali R, et al. Hydrophobic interactions between the HA helix and S4–S5 linker modulate apparent Ca2+ sensitivity of SK2 channels. Acta Physiol. 2020:e13552.
Galeotti N, Ghelardini C, Caldari B, Bartolini A. Effect of potassium channel modulators in mouse forced swimming test. Br J Pharmacol. 1999;126:1653-1659.
van der Staay FJ, Fanelli RJ, Blokland A, Schmidt BH. Behavioral effects of apamin, a selective inhibitor of the SK(Ca)-channel, in mice and rats. Neurosci Biobehav Rev. 1999;23(8):1087-1110.
Diness JG, Sorensen US, Nissen JD, et al. Inhibition of small conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:380-390.
Girault A, Haelters J-P, Potier-Cartereau M, et al. Targeting SKCa channels in cancer: potential new therapeutic approaches. Curr Med Chem. 2012;19:697-713.
Kasumu AW, Hougaard C, Rode F, et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol. 2012;19:1340-1353.
Dimitriadi M, Kye MJ, Kalloo G, Yersak JM, Sahin M, Hart AC. The neuroprotective drug riluzole acts via small conductance Ca2+-activated K+ channels to ameliorate defects in spinal muscular atrophy models. J Neurosci. 2013;33:6557-6562.
Devor DC, Singh AK, Frizzell RA, Bridges RJ. Modulation of Cl- secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel. Am J Physiol – Lung Cell Mol Physiol. 1996;271:L775-L784.
Strøbæk D, Teuber L, Jørgensen TD, et al. Activation of human IK and SK Ca2+-activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta. 2004;1665:1-5.
Tao X, Hite RK, MacKinnon R. Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature. 2017;541:46-51.
Hite RK, Tao X, MacKinnon R. Structural basis for gating the high-conductance Ca2+-activated K+ channel. Nature. 2017;541:52-57.
Lee CH, MacKinnon R. Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science. 2018;360:508-513.
Nam Y-W, Baskoylu SN, Gazgalis D, et al. A V-to-F substitution in SK2 channels causes Ca2+ hypersensitivity and improves locomotion in a C. elegans ALS model. Sci Rep. 2018;8:10749.
Monaghan AS, Benton DC, Bahia PK, et al. The SK3 subunit of small conductance Ca2+-activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system. J Biol Chem. 2004;279:1003-1009.
Dilly S, Philippart F, Lamy C, et al. The interactions of apamin and tetraethylammonium are differentially affected by single mutations in the pore mouth of small conductance calcium-activated potassium (SK) channels. Biochem Pharmacol. 2013;85:560-569.
Nolting A, Ferraro T, D’Hoedt D, Stocker M. An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels. J Biol Chem. 2007;282:3478-3486.
Lamy C, Goodchild SJ, Weatherall KL, et al. Allosteric block of KCa2 channels by apamin. J Biol Chem. 2010;285:27067-27077.
Weatherall K, Seutin V, Liégeois J-F, Marrion NV. Crucial role of a shared extracellular loop in apamin sensitivity and maintenance of pore shape of small conductance calcium-activated potassium (SK) channels. Proc Natl Acad Sci. 2011;108:18494-18499.
Bauer CK, Schneeberger PE, Kortüm F, et al. Gain-of-function mutations in KCNN3 encoding the small-conductance Ca2+-activated K+ channel SK3 cause Zimmermann-Laband Syndrome. Am J Hum Genet. 2019;104:1139-1157.