Article (Scientific journals)
Could KL-6 levels in COVID-19 help to predict lung disease?
Frix, Anne-Noëlle; Schoneveld, Lauranne; LADANG, Aurélie et al.
2020In Respiratory Research, 21 (309)
Peer Reviewed verified by ORBi
 

Files


Full Text
s12931-020-01560-4.pdf
Publisher postprint (746.15 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Biomarker; COVID-19; Interstitial lung disease; KL-6; Lung infection
Abstract :
[en] BACKGROUND: Coronavirus disease COVID-19 has become a public health emergency of international concern. Together with the quest for an effective treatment, the question of the post-infectious evolution of affected patients in healing process remains uncertain. Krebs von den Lungen 6 (KL-6) is a high molecular weight mucin-like glycoprotein produced by type II pneumocytes and bronchial epithelial cells. Its production is raised during epithelial lesions and cellular regeneration. In COVID-19 infection, KL-6 serum levels could therefore be of interest for diagnosis, prognosis and therapeutic response evaluation. MATERIALS AND METHODS: Our study retrospectively compared KL-6 levels between a cohort of 83 COVID-19 infected patients and two other groups: healthy subjects (n = 70) on one hand, and a heterogenous group of patients suffering from interstitial lung diseases (n = 31; composed of 16 IPF, 4 sarcoidosis, 11 others) on the other hand. Demographical, clinical and laboratory indexes were collected. Our study aims to compare KL-6 levels between a COVID-19 population and healthy subjects or patients suffering from interstitial lung diseases (ILDs). Ultimately, we ought to determine whether KL-6 could be a marker of disease severity and bad prognosis. RESULTS: Our results showed that serum KL-6 levels in COVID-19 patients were increased compared to healthy subjects, but to a lesser extent than in patients suffering from ILD. Increased levels of KL-6 in COVID-19 patients were associated with a more severe lung disease. DISCUSSION AND CONCLUSION: Our results suggest that KL-6 could be a good biomarker to assess ILD severity in COVID-19 infection. Concerning the therapeutic response prediction, more studies are necessary.
Disciplines :
Cardiovascular & respiratory systems
Laboratory medicine & medical technology
Author, co-author :
Frix, Anne-Noëlle ;  Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de pneumologie - allergologie
Schoneveld, Lauranne 
LADANG, Aurélie  ;  Centre Hospitalier Universitaire de Liège - CHU > Unilab > Laboratoire endocrinologie
HENKET, Monique ;  Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Clinique de l'asthme
DUYSINX, Bernard ;  Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Oncologie thoracique
VAILLANT, Frédérique ;  Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de pneumologie - allergologie
Misset, Benoît  ;  Université de Liège - ULiège > Département des sciences cliniques > Soins intensifs
Moutschen, Michel  ;  Université de Liège - ULiège > Département des sciences cliniques > Immunopath. - Maladies infect. et médec. interne gén.
Louis, Renaud ;  Université de Liège - ULiège > Département des sciences cliniques > Pneumologie - Allergologie
Cavalier, Etienne  ;  Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Guiot, Julien  ;  Université de Liège - ULiège > Département de pharmacie > Département de pharmacie
Language :
English
Title :
Could KL-6 levels in COVID-19 help to predict lung disease?
Publication date :
November 2020
Journal title :
Respiratory Research
ISSN :
1465-9921
eISSN :
1465-993X
Publisher :
BioMed Central, United Kingdom
Volume :
21
Issue :
309
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 01 December 2020

Statistics


Number of views
143 (24 by ULiège)
Number of downloads
16 (14 by ULiège)

Scopus citations®
 
29
Scopus citations®
without self-citations
27
OpenCitations
 
23
OpenAlex citations
 
32

Bibliography


Similar publications



Contact ORBi