Bone-tendon interface; Micro-computed tomography; Micro-finite element model
Abstract :
[en] Tendons anchor to bone through a multi-material region called enthesis, showing several strategies to cope with the challenging task of joining dissimilar tissues. Less understood is whether bone microstructure also displays specific features to facilitate force transmission from tendon to bone. Such knowledge is of clinical relevance as local mechanical stresses play a crucial role in avulsion
fractures and interface pathologies. Here we characterized the microstructure of bone close to tendon insertion in calcanei of adult rats (n=5) with micro-computed tomography (SkyScan, Bruker; 5 to 1.2 micrometer voxel size). After aligning the virtual bones along the main axes of inertia, we investigated a bony tuberosity connecting the Achilles tendon with the plantar fascia ligament. We performed a spatially resolved analysis of trabecular microstructure, indicating that trabecular network (BV/TV and anisotropy) is not significantly influenced by the tendon insertion (P = 0.69). Conversely, high resolution images revealed that bone beneath the attachment region exhibits a highly oriented canal network, aligned with the pulling direction of the tendon (P b 0.005). Image-based micro-finite element analysis was used to calculate stresses within the bone induced by tendon loading. Simulations highlighted a non-trivial stress pattern within the bone with high stresses mainly flowing within the tuberosity (27% higher than in the rest of the bone, P b 0.005). Our work suggests that not only the enthesis but also the underlying bone is well-adapted to accommodate tendon loading.
Research Center/Unit :
Mechanics of Biological and Bioinspired Materials lab
Disciplines :
Orthopedics, rehabilitation & sports medicine Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Tits, Alexandra ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Varga, Peter; AO Research Institute Davos, Davos, Switzerland
Volders, Timothy ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Kaux, Jean-François ; Université de Liège - ULiège > Département des sciences de la motricité > Médecine physique, réadaptation et traumatologie du sport
Plougonven, Erwan ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs (Product, Environment, Processes)
Fernandez, Justin; Auckland Bioengineering Institute, Auckland, New Zealand
Drion, Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Méth. expér. des anim. de labo et éthique en expér. anim.
Van Lenthe, G Harry; KU Leuven, Leuven, Belgium > Department of Mechanical Engineering
Ruffoni, Davide ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Language :
English
Title :
Local adaptation of bone micro-structure and canal network to tendon insertion investigated by image-based micro-FE simulations
Publication date :
October 2020
Event name :
47th European Calcified Tissue Society Congress
Event organizer :
European Calcified Tissue Society
Event date :
du 22 octobre 2020 au 24 octobre 2020
Audience :
International
Journal title :
Bone Reports
eISSN :
2352-1872
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
13
Pages :
100392
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture