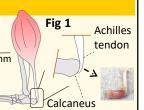


# P043: Local adaptation of bone micro-structure and canal network to tendon insertion investigated by image-based micro-FE simulations


 atits(at)uliege.be **L** +32 43669437 biomat.uliege.be

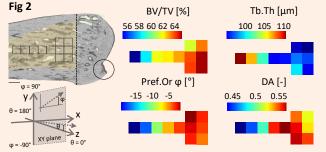
A. Tits <sup>1</sup>, P. Varga <sup>2</sup>, T. Volders <sup>1</sup>, J-F. Kaux <sup>3</sup>, E. Plougonven <sup>4</sup>, J Fernandez <sup>5</sup>, P Drion <sup>6</sup>, G H Van Lenthe <sup>7</sup>, D Ruffoni <sup>1</sup>

<sup>1</sup> Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium, <sup>2</sup> AO Research Institute Davos, Davos, Switzerland, <sup>3</sup> Department of Physical Medicine and Sports Traumatology, University of Liège, Liège, Belgium, <sup>4</sup>Chemical Engineering Department, University of Liège, Liège, Belgium, 5 Auckland Bioengineering Institute, Auckland, New Zealand, 6 Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium, <sup>7</sup> Department of Mechanical Engineering, KU Leuven, Leuven, Belgium

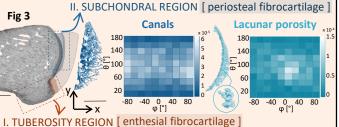
#### INTRODUCTION

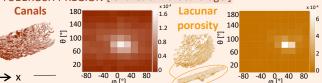
- Tendons anchor to bone through a multi-material region called enthesis, showing several strategies to cope with the challenging task of joining dissimilar tissues. Less understood is whether bone micro-structure and fibrocartilage covering it also display specific features to manage the load received from the tendon.
- Bone micro-structure dictates stress distribution, also at the enthesis location. Local mechanical cues are believed to play a crucial role in several pathologies and injuries of the attachment region (including enthesis inflammation and avulsion fractures).




## I. BONE MICRO-STRUCTURE

#### **METHODS**


Quantitative analysis [Matlab, CTAn and Avizo] of micro-CT scans from n = 5 Sprague Dawley rats, at low (5  $\mu$ m) and high (1.25  $\mu$ m) resolution [Bruker SkyScan 1272].


### Scale bars: 500 µm

- Trabecular micro-structure: clear gradient along the craniocaudal direction but none along the dorso-ventral direction → trabecular network not significantly influenced by the tendon insertion.



- Canal network and lacunar porosity: significantly oriented canal network, as well as fibrochondrocytes of the mineralized fibrocartilage forming rows highly aligned towards the tendon.



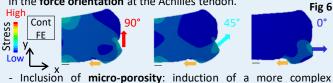


- Mean roughness (root mean square P<sub>a</sub>): 65% higher at the interface between unmineralized (UFC) and mineralized (MFC)

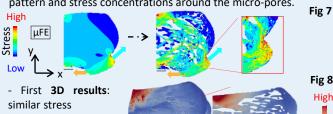
enthesis fibrocartilage. II. SUB I. TUBEROSITY II. SUBCHONDRAL I. TUB 5 10 Roughness Pq [μm]

# II. BONE MECHANICAL MICROENVIRONMENT

#### **METHODS**


Continuum (cont FE) and micro-finite (µFE) element model based on micro-CT scans in two dimensions, down to a resolution of 1.25 μm [Ansys] and three dimensions on a rescaled 20 μm model [Parosol].

> Scale bars: 500 µm **RESULTS**


- Increased force intensity at the ligament side (equivalent to human plantar fascia): progressive concentration of stresses inside the tuberosity region. Fig 5



- Stress level in the tuberosity region: robust against the changes in the force orientation at the Achilles tendon.



pattern and stress concentrations around the micro-pores. Fig 7



concentration within the tuberosity, but higher stress level.

# **MAIN CONCLUSIONS & OUTLOOK**

- Site-dependency on surface roughness, fibrochondrocytes lacunae orientation indicates that specific loading conditions may be associated with dedicated fibrocartilage types, but also adapted bone micro-porosity.
- Tendon loading induces a non-trivial stress pattern within bone that could not be predicted with a simple cantilever beam model.
- Mineral content and mechanical properties at the two sites of interest will be investigated (in collaboration with the Ludwig Boltzmann Institute of Osteology in Vienna, Austria).