Paper published in a book (Scientific congresses and symposiums)
Graphical Normalizing Flows
Wehenkel, Antoine; Louppe, Gilles
2021In Proceedings of AISTATS 2021
Peer reviewed
 

Files


Full Text
Graphical_Normalizing_Flows.pdf
Publisher postprint (1.53 MB)
Download
Annexes
NFsandBNs.pdf
Publisher postprint (5.2 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Normalizing Flows; Bayesian Networks; Density Estimation; Density Estimator; Probability Distribution; Machine Learning; Unsupervised Learning
Abstract :
[en] Normalizing flows model complex probability distributions by combining a base distribution with a series of bijective neural networks. State-of-the-art architectures rely on coupling and autoregressive transformations to lift up invertible functions from scalars to vectors. In this work, we revisit these transformations as probabilistic graphical models, showing they reduce to Bayesian networks with a pre-defined topology and a learnable density at each node. From this new perspective, we propose the graphical normalizing flow, a new invertible transformation with either a prescribed or a learnable graphical structure. This model provides a promising way to inject domain knowledge into normalizing flows while preserving both the interpretability of Bayesian networks and the representation capacity of normalizing flows. We show that graphical conditioners discover relevant graph structure when we cannot hypothesize it. In addition, we analyze the effect of `1-penalization on the recovered structure and on the quality of the resulting density estimation. Finally, we show that graphical conditioners lead to competitive white box density estimators
Disciplines :
Mathematics
Author, co-author :
Wehenkel, Antoine  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Louppe, Gilles  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Language :
English
Title :
Graphical Normalizing Flows
Publication date :
13 April 2021
Event name :
The 24th International Conference on Artificial Intelligence and Statistics
Event date :
April 2021
Audience :
International
Main work title :
Proceedings of AISTATS 2021
Peer reviewed :
Peer reviewed
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 18 November 2020

Statistics


Number of views
74 (11 by ULiège)
Number of downloads
42 (3 by ULiège)

Scopus citations®
 
6
Scopus citations®
without self-citations
6

Bibliography


Similar publications



Contact ORBi