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Abstract

Normalizing flows model complex probabil-
ity distributions by combining a base distri-
bution with a series of bijective neural net-
works. State-of-the-art architectures rely on
coupling and autoregressive transformations
to lift up invertible functions from scalars to
vectors. In this work, we revisit these trans-
formations as probabilistic graphical models,
showing they reduce to Bayesian networks
with a pre-defined topology and a learnable
density at each node. From this new per-
spective, we propose the graphical normal-
izing flow, a new invertible transformation
with either a prescribed or a learnable graph-
ical structure. This model provides a promis-
ing way to inject domain knowledge into nor-
malizing flows while preserving both the in-
terpretability of Bayesian networks and the
representation capacity of normalizing flows.
We show that graphical conditioners discover
relevant graph structure when we cannot hy-
pothesize it. In addition, we analyze the ef-
fect of ¢1-penalization on the recovered struc-
ture and on the quality of the resulting den-
sity estimation. Finally, we show that graph-
ical conditioners lead to competitive white
box density estimators. Our implementa-
tion is available at https://github.com/
AWehenkel /DAG-NF.

1 Introduction

Normalizing flows [NFs, Rezende and Mohamed, 2015,
Tabak et al., 2010, Tabak and Turner, 2013, Rip-
pel and Adams, 2013] have proven to be an effective
way to model complex data distributions with neural
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networks. These models map data points to latent
variables through an invertible function while keeping
track of the change of density caused by the trans-
formation. In contrast to variational auto-encoders
(VAEs) and generative adversarial networks (GANs),
NFs provide access to the exact likelihood of the
model’s parameters, hence offering a sound and di-
rect way to optimize the network parameters. Nor-
malizing flows have proven to be of practical interest
as demonstrated by Van Den Oord et al. [2018], Kim
et al. [2018] and Prenger et al. [2019] for speech syn-
thesis, by Rezende and Mohamed [2015], Kingma et al.
[2016] and Van Den Berg et al. [2018] for variational
inference or by Papamakarios et al. [2019b] and Green-
berg et al. [2019] for simulation-based inference. Yet,
their usage as a base component of the machine learn-
ing toolbox is still limited in comparison to GANs or
VAEs. Recent efforts have been made by Papamakar-
ios et al. [2019a] and Kobyzev et al. [2020] to define the
fundamental principles of flow design and by Durkan
et al. [2019] to provide coding tools for modular im-
plementations. We argue that normalizing flows would
gain in popularity by offering stronger inductive bias
as well as more interpretability.

Sometimes forgotten in favor of more data oriented
methods, probabilistic graphical models (PGMs) have
been popular for modeling complex data distributions
while being relatively simple to build and read [Koller
and Friedman, 2009, Johnson et al., 2016]. Among
PGMs, Bayesian networks [BNs, Pearl and Russell,
2011] offer an appealing balance between modeling
capacity and simplicity. Most notably, these models
have been at the basis of expert systems before the
big data era (e.g. [Diez et al., 1997, Kahn et al.,
1997, Seixas et al., 2014]) and were commonly used
to merge qualitative expert knowledge and quantita-
tive information together. On the one hand, experts
stated independence assumptions that should be en-
coded by the structure of the network. On the other
hand, data were used to estimate the parameters of the
conditional probabilities/densities encoding the quan-
titative aspects of the data distribution. These mod-
els have progressively received less attention from the
machine learning community in favor of other methods
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that scale better with the dimensionality of the data.

Driven by the objective of integrating intuition into
normalizing flows and the proven relevance of BNs for
combining qualitative and quantitative reasoning, we
summarize our contributions as follows: (i) From the
insight that coupling and autoregressive transforma-
tions can be reduced to Bayesian networks with a fixed
topology, we introduce the more general graphical con-
ditioner for normalizing flows, featuring either a pre-
scribed or a learnable BN topology; (ii) We show that
using a correct prescribed topology leads to improve-
ments in the modeled density compared to autoregres-
sive methods. When the topology is not known we ob-
serve that, with the right amount of ¢;-penalization,
graphical conditioners discover relevant relationships;
(iii) In addition, we show that graphical normalizing
flows perform well in a large variety of density estima-
tion tasks compared to classical black-box flow archi-
tectures.

2 Background

Bayesian networks A Bayesian network is a di-
rected acyclic graph (DAG) that represents indepen-
dence assumptions between the components of a ran-
dom vector. Formally, let © = [z4,... ,md]T € R? be
a random vector distributed under p,. A BN associ-
ated to x is a directed acyclic graph made of d vertices
representing the components z; of . In this kind of
network, the absence of edges models conditional inde-
pendence between groups of components through the
concept of d-separation [Geiger et al., 1990]. A BN
is a valid representation of a random vector « iff its
density can be factorized as

d

pa(@) = [ [ p(@:|Py), (1)

=1

where P; = {j : A; ; = 1} denotes the set of parents of
the vertex i and A € {0,1}9*? is the adjacency matrix
of the BN. As an example, Fig. la is a valid BN for
any distribution over x because it does not state any
independence and leads to a factorization that corre-
sponds to the chain rule. However, in practice we seek
for a sparse and valid BN which models most of the
independence between the components of x, leading
to an efficient factorization of the modeled probability
distribution. It is worth noting that making hypothe-
ses on the graph structure is equivalent to assuming
certain conditional independence between some of the
vector’s components.

Normalizing flows A normalizing flow is defined
as a sequence of invertible transformation steps g, :
R? = R? (k = 1,..., K) composed together to create

Figure 1: Bayesian networks equivalent to normalizing
flows made of a single transformation step. (a) Autoregres-
sive conditioner. (b) Coupling conditioner. (c) Coupling
conditioner, with latent variables shown explicitly. Double
circles stand for deterministic functions of the parents.

an expressive invertible mapping g := g; 0--- 0 gy :
R? — R%. This mapping can be used to perform den-
sity estimation, using g(-; ) : R? — R to map a sam-
ple € R? onto a latent vector z € R? equipped with
a prescribed density p.(z) such as an isotropic Nor-
mal. The transformation g implicitly defines a density
p(x; 0) as given by the change of variables formula,

p(x;0) = p=(g(x;0)) ‘det Jg(m;e) ) (2)

where Jg(z.9) is the Jacobian of g(x;8) with respect
to . The resulting model is trained by maximizing
the likelihood of the model’s parameters 0 given the
training dataset X = {z!,...,2"}. Unless needed, we
will not distinguish between g and g,, for the rest of
our discussion.

In general the steps g can take any form as long as
they define a bijective map. Here, we focus on a sub-
class of normalizing flows for which the steps can be
mathematically described as

g(z) = [¢'(x1; ¢! (z)) g(za (@), (3)

where the ¢! are the conditioners which role is to
constrain the structure of the Jacobian of g. The func-
tions ¢*, partially parameterized by their conditioner,
must be invertible with respect to their input variable
x;. They are often referred to as transformers, how-
ever in this work we will use the term normalizers to
avoid any confusion with attention-based transformer
architectures.

The conditioners examined in this work can be com-
bined with any normalizer. In particular, we con-
sider affine and monotonic normalizers. An affine
normalizer g : R x R? — R can be expressed as
g(x;m,s) = xexp(s) + m, where m € R and s € R
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are computed by the conditioner. There exist mul-
tiple methods to parameterize monotonic normalizers
[Huang et al., 2018, De Cao et al., 2020, Durkan et al.,
2019, Jaini et al., 2019], but in this work we rely on
Unconstrained Monotonic Neural Networks [UMNNS,
Wehenkel and Louppe, 2019] which can be expressed as
g(x;e) = [; f(t,e)dt + B(c), where ¢ € Rl is an em-
bedding made by the conditioner and f : Rlel+l — R+
and 8 : RY — R are two neural networks respectively
with a strictly positive scalar output and a real scalar
output. Huang et al. [2018] proved NFs built with
autoregressive conditioners and monotonic normaliz-
ers are universal density approximators of continuous
random variables.

3 Normalizing flows as Bayesian
networks

Autoregressive conditioners Due to computing
speed considerations, NFs are usually composed of
transformations for which the determinant of the Jaco-
bian can be computed efficiently, as otherwise its eval-
uation would scale cubically with the input dimension.
A common solution is to use autoregressive condition-
ers, i.e., such that
c'(x) = h' ([ml J;i_l]T>

are functions h’ of the first i — 1 components of .
This particular form constrains the Jacobian of g to

be lower triangular, which makes the computation of
its determinant O(d).

For the multivariate density p(x; @) induced by g(«; )
and p.(z), we can use the chain rule to express the
joint probability of  as a product of d univariate con-
ditional densities,

d
p(x;0) = p(x1;0) | [ p(wilr.i-1:0). (4)

=2

When p,(z) is a factored distribution p.(z) =
ngl p(2;), we identify that each component z;
coupled with the corresponding functions ¢* and
embedding vectors ¢! encode for the conditional
p(x;|®1.4-1;0). Therefore, and as illustrated in Fig. 1a,
autoregressive transformations can be seen as a way
to model the conditional factors of a BN that does
not state any independence but relies on a prede-
fined node ordering. This becomes clear if we define
P; =A{x1,...,2;—1} and compare (4) with (1).

The complexity of the conditional factors strongly de-
pends on the ordering of the vector components. While
not hurting the universal representation capacity of

normalizing flows, the arbitrary ordering used in au-
toregressive transformations leads to poor inductive
bias and to factors that are most of the time difficult
to learn. In practice, one often alleviates the arbitrari-
ness of the ordering by stacking multiple autoregressive
transformations combined with random permutations
on top of each other.

Coupling conditioners Coupling layers [Dinh
et al., 2015] are another popular type of conditioners
that lead to a bipartite structure. The conditioners c?
made from coupling layers are defined as

At if i<k
. T
h’({xl xk] ) i P>k

where the underlined h' € RI¢l denote constant values
and k € {1,...,d} is a hyper-parameter usually set to
L%J As for autoregressive conditioners, the Jacobian
of g made of coupling layers is lower triangular. Again,
and as shown in Fig. 1b and 1c, these transformations
can be seen as a specific class of BN where P; = {}
for i < k and P; = {1,...,k} for i > k. D-separation
can be used to read off the independencies stated by
this class of BNs such as the conditional independence
between each pair in X 1.q knowing x;.5. For this rea-
son, and in contrast to autoregressive transformations,
coupling layers are not by themselves universal density
approximators even when associated with very expres-
sive normalizers g' [Wehenkel and Louppe, 2020]. In
practice, these bipartite structural independencies can
be relaxed by stacking multiple layers, and may even
recover an autoregressive structure. They also lead to
useful inductive bias, such as in the multi-scale archi-
tecture with checkerboard masking [Dinh et al., 2017,
Kingma and Dhariwal, 2018].

c(z) =

Algorithm 1 Sampling
z~N(0,1)

Tz
repeat

¢+~ h(xo A, Vie{l,...,d}

xi — (¢9) N(zi;¢,0) Vie{l,...,d}
until & converged

4 Graphical normalizing flow

4.1 Graphical conditioners

Following up on the previous discussion, we introduce
the graphical conditioner architecture. We motivate
our approach by observing that the topological order-
ing (a.k.a. ancestral ordering) of any BN leads to a
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lower triangular adjacency matrix whose determinant
is equal to the product of its diagonal terms (proof in
Appendix B). Therefore, conditioning factors ¢'(x) se-
lected by following a BN adjacency matrix necessarily
lead to a transformation g whose Jacobian determi-
nant remains efficient to compute.

Formally, given a BN with adjacency matrix A €
{0,1}9%4 we define the graphical conditioner as
being

c(z) = hi(x o A;.), (5)

where x ® A; . is the element-wise product between
the vector = and the i*" row of A — i.e., the binary
vector A; . is used to mask on x. NFs built with this
new conditioner architecture can be inverted by se-
quentially inverting each component in the topological
ordering. In our implementation the neural networks
modeling the A’ functions are shared to save memory
and they take an additional input that one-hot encodes
the value 7. An alternative approach would be to use
a masking scheme similar to what is done by Germain
et al. [2015] in MADE as suggested by Lachapelle et al.
[2019].

The graphical conditioner architecture can be used to
learn the conditional factors in a continuous BN while
elegantly setting structural independencies prescribed
from domain knowledge. In addition, the inverse of
NFs built with graphical conditioners is a simple as it
is for autoregressive and coupling conditioners, Algo-
rithm 1 describes an inversion procedure. We also now
note how these two conditioners are just special cases
in which the adjacency matrix reflects the classes of
BNs discussed in Section 3.

4.2 Learning the topology

In many cases, defining the whole structure of a BN
is not possible due to a lack of knowledge about the
problem at hand. Fortunately, not only is the density
at each node learnable, but also the DAG structure
itself: defining an arbitrary topology and ordering, as
it is implicitly the case for autoregressive and coupling
conditioners, is not necessary.

Building upon Non-combinatorial Optimization wvia
Trace FExponential and Augmented lagRangian for
Structure learning [NO TEARS, Zheng et al., 2018],
we convert the combinatorial optimization of score-
based learning of a DAG into a continuous optimiza-
tion by relaxing the domain of A to real numbers in-
stead of binary values. That is,

max F(A) max F(A)
A€gRdxd — AcRdxd
s.t. G(A) € DAGs s.t. w(A) =0,

(6)

where G(A) is the graph induced by the weighted adja-
cency matrix A and F : R?*? — R is the log-likelihood
of the graphical NF g plus a regularization term, i.e.,

N
F(A) = Zlog (p(;];j;g)) + /\Z1HA||1’ (7)

where Ay, is an ¢;-regularization coefficient and N is
the number of training samples x*. The likelihood is
computed as

g (x; hi(w ©A;.),0)

d
p(a;0) =p-(g(x;0)) [ |

i=1

The function w(A) that enforces the acyclicity is ex-
pressed as suggested by Yu et al. [2019] as

d
w(A) = tr ((I + aA)?) —d o tr (Z ozkAk> ,

k=1

where @ € R, is a hyper-parameter that avoids ex-

ploding values for w(A). In the case of positively val-

ued A, an element (i,j) of A¥ = AA...A is non-null
—_—

k terms
if and only if there exists a path going from node j

to node i that is made of exactly k edges. Intuitively
w(A) expresses to which extent the graph is cyclic. In-
deed, the diagonal elements (i,7) of A* will be as large
as there are many paths made of edges that correspond
to large values in A from a node to itself in k steps.

In comparison to our work, Zheng et al. [2018] use
a quadratic loss on the corresponding linear structural
equation model (SEM) as the score function F'(A). By
attaching normalizing flows to topology learning, our
method has a continuously adjustable level of complex-
ity and does not make any strong assumptions on the
form of the conditional factors.

4.3 Stochastic adjacency matrix

In order to learn the BN topology from the data, the
adjacency matrix must be relaxed to contain reals in-
stead of booleans. It also implies that the graph in-
duced by A does not formally define a DAG during
training. Work using NO TEARS to perform topol-
ogy learning directly plug the real matrix A in (6)
[Zheng et al., 2018, Yu et al., 2019, Lachapelle et al.,
2019, Zheng et al., 2020] however this is inadequate
because the quantity of information going from node
7 to node ¢ does not continuously relate to the value
of A; ;. Either the information is null if 4; ; = 0 or it
passes completely if not. Instead, we propose to build
the stochastic pseudo binary valued matrix A’ from A,
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defined as
log(a (A7 )41
(A T
A= 2 p) )
vJ log(a (A7 ;) +71 log(1—0 (A7 ;) +72
e T + e T
where 71,72 ~  Gumbel(0,1) and o(a) =
2(sigmoid(2a?) — %) normalizes the values of A

between 0 and 1, being close to 1 for large values
and close to zero for values close to 0. The hyper-
parameter 7' controls the sampling temperature and
is fixed to 0.5 in all our experiments. In contrast to
directly using the matrix A, this stochastic trans-
formation referred to as the Gumbel-Softmax trick
in the literature [Maddison et al., 2016, Jang et al.,
2016] allows to create a direct and continuously
differentiable relationship between the weights of the
edges and the quantity of information that can transit
between two nodes. Indeed, the probability mass of
the random variables A ; is mainly located around
0 and 1, and its expected value converges to 1 when
A; ; increases.

4.4 Optimization

We rely on the augmented Lagrangian approach to
solve the constrained optimization problem (6) as ini-
tially proposed by Zheng et al. [2018]. This optimiza-
tion procedure requires solving iteratively the follow-
ing sub-problems:

max Ey, o, [F(A)] = Aw(4) - Zw(4)?, ()

where A\, and p; respectively denote the Lagrangian
multiplier and penalty coefficients of the sub-problem
t.

We solve these optimization problems with mini-batch
stochastic gradient ascent. We update the values of
~v¢ and p; as suggested by Yu et al. [2019] when the
validation loss does not improve for 10 consecutive
epochs. Once w(A) equals 0, the adjacency matrix
is acyclic up to numerical errors. We recover an exact
DAG by thresholding the elements of A while check-
ing for acyclicity with a path finding algorithm. We
provide additional details about the optimization pro-
cedure used in our experiments in Appendix A.

5 Experiments

In this section, we demonstrate some applications of
graphical NFs in addition to unifying NFs and BN
under a common framework. We first demonstrate
how pre-loading a known or hypothesized DAG struc-
ture can help finding an accurate distribution of the
data. Then, we show that learning the graph topol-
ogy leads to relevant BNs that support generalization

Table 1: Datasets description. d=Dimension of the data.
V =Number of edges in the ground truth Bayesian Network.

Dataset d V Train Test
Arithmetic Circuit 8 8 10, 000 5,000
8 Pairs 16 8 10,000 5,000
Tree 7 8 10,000 5,000
Protein 11 20 6,000 1,466
POWER 6 <15 1,659,917 204,928
GAS 8 <28 852,174 105,206
HEPMASS 21 <210 315,123 174,987
MINIBOONE 43 <903 29,556 3,648
BSDS300 63 < 1,953 1,000,000 250,000

Table 2: Graphical vs autoregressive conditioners com-
bined with monotonic normalizers. Average log-likelihood
on test data over 5 runs, under-scripted error bars are equal
to the standard deviation. Results are reported in nats;
higher is better. The best performing architecture for each
dataset is written in bold. Graphical conditioners clearly
lead to improved density estimation when given a relevant
prescribed topology in 3 out of the 4 datasets.

Conditioner Graphical Autoreg.

Arithmetic Circuit 3.991 ;4 3.064 35

8 Pairs —9.404 gg —11.504 o7
Tree —6.851 g2 —6.964 05
Protein 6.464 08  7-524 19

well when combined with ¢;-penalization. Finally, we
demonstrate that mono-step normalizing flows made
of graphical conditioners are competitive density esti-
mators.

5.1 On the importance of graph topology

The following experiments are performed on four dis-
tinct datasets, three of which are synthetic, such that
we can define a ground-truth minimal Bayesian net-
work, and the fourth is a causal protein-signaling net-
work derived from single-cell data [Sachs et al., 2005].
Additional information about the datasets are pro-
vided in Table 1 and in Appendix C. For each exper-
imental run we first randomly permute the features
before training the model in order to compare autore-
gressive and graphical conditioners fairly.

Prescribed topology Rarely do real data come
with their associated Bayesian network however often-
times experts want to hypothesize a network topology
and to rely on it for the downstream tasks. Some-
times the topology is known a priori, as an example
the sequence of instructions in stochastic simulators
can usually be translated into a graph topology (e.g. in
probabilistic programming [van de Meent et al., 2018,
Weilbach et al., 2020]). In both cases, graphical con-
ditioners allow to explicitly take advantage of this to
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Figure 2: (a): Test log-likelihood as a function of ¢;-
penalization on 8 pairs dataset. The upper bound is
the average result when given a prescribed topology, the
lower bound is the result with an autoregressive condi-
tioner. Learning the right topology leads to better results
than autoregressive conditioners. (b): The blacked cells
corresponds to one correct topology of the 8 pairs dataset
and the grey cells to the transposed adjacency matrix. The
stars denote the edges discovered by the graphical condi-
tioner when trained with A¢, = 4. The optimization dis-
covers a relevant BN (equivalent to the ground truth).

build density estimators while keeping the assumptions
made about the network topology valid.

Table 2 presents the test likelihood of autoregressive
and graphical normalizing flows on the four datasets.
The flows are made of a single step and use mono-
tonic normalizers. The neural network architectures
are all identical. Further details on the experimental
settings as well as additional results for affine normal-
izers are respectively provided in Appendix C.2 and
C.3. We observe how using correct BN structures lead
to good test performance in Table 2. Surprisingly, the
performance on the protein dataset are not improved
when using the ground truth graph. We observed dur-
ing our experiments (see Appendix C.3) that learning
the topology from this dataset sometimes led to im-
proved density estimation performance with respect
to the ground truth graph. The limited dataset size
does not allow us to answer if this comes from to the
limited capacity of the flow and/or from the erroneous
assumptions in the ground truth graph. However, we
stress out that the graphical flow respects the assumed
causal structure in opposition to the autoregressive
flow.

Learning the topology The )y, coefficient intro-
duced in (7) controls the sparsity of the optimized BN,
allowing to avoid some spurious connections. We now
analyze the effect of sparsity on the density estimation
performance. Fig. 2a shows the test log-likelihood as a
function of the ¢1-penalization on the 8 pairs dataset.
We observe that the worst results are obtained when
there is no penalization. Indeed, in this case the al-
gorithm finds multiple spurious connections between
independent vector’s components and then overfits on

12 3 4 5 6 7 8 9 101

Figure 3: The adjacency matrix of the protein interaction
network. The blacked cells are the directed connections
proposed by domain experts and the grey is the transposed
adjacency matrix. The stars denote the edges discovered
by the graphical conditioner when trained with A, = 12.
In a realistic setting, the optimization leads to a graph that
shares a lot with the one designed by experts.

these incorrect relationships. Another extreme case
shows up when the effect of penalization is too strong,
in this case, the learning procedure underfits the data
because it ignores too many relevant connections. It
can also be concluded from the plot that the optimal
{1-penalization performs on par with the ground truth
topology, and certainly better than the autoregressive
conditioner. Additional results on the other datasets
provided in Appendix C lead to similar conclusions.

Protein network The adjacency matrix discovered
by optimizing (8) (with A\;, = 12) on the protein net-
work dataset is shown in Fig. 3. All the connections
discovered by the method correspond to ground truth
connections. Unsurprisingly, their orientation do not
always match with what is expected by the experts.
Overall we can see that the optimization procedure
is able to find relevant connections between variables
and avoids spurious ones when the ¢;-penalization is
optimized. Previous work on topology learning such
as Zheng et al. [2018], Yu et al. [2019], Lachapelle
et al. [2019] compare their method to others by look-
ing at the topology discovered on the same dataset.
Here we do not claim that learning the topology with
a graphical conditioner improves over previous meth-
ods. Indeed, we believe that the difference between
the methods mainly relies on the hypothesis and/or
inductive biased made on the conditional densities.
Which method would perform better is dependent on
the application. Moreover, the Structural Hamiltonian
Distance (SHD) and the Structural Inference Distance
(SID), often used to compare BNs, are not well moti-
vated in general. On the one hand the SHD does not
take into account the independence relationships mod-
eled with Bayesian networks, as an example the SHD
between the graph found on 8 pairs dataset of Fig. 2b
and one possible ground truth is non zero whereas the
two BNs are equivalent. On the other hand the SID
alms to compare causal graphs whereas the methods
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Table 3: Average log-likelihood on test data over 3 runs,
under-scripted error bars are equal to the standard devia-
tion. Results are reported in nats; higher is better. The
best performing architecture per category for each dataset
is written in bold. (a) 1l-step affine normalizers (b) 1-step
monotonic normalizers. Graphical normalizing flows out-
perform coupling and autoregressive architectures on most
of the datasets.

Dataset POWER GAS HEPMASS MINIBOONE BSDS300

Coup.  —5.604 g9 —3.054 o1 —25.744 g1 —38.344 oo 57.334 gp

(a)Auto.  —3.554 g9 —0.8344 g1 —21.664 g1 —16.704 o5 63.744 g

Graph. —2.804 g1 1.994 g2 —21.184 g7 —19.674 g 62.854 g7

Coup.  0.254 g9 5.124 g3 —20.554 g4 —32.044 15 107.174 46
(b)Auto. 0.584 o9 9794 04 —14.524 15 —11.664 gy 151.294 37
Graph.  0.624 gq 10.154 15 —14.174 13 —16.234 55 155.224 4

discussed here do not learn causal relationships. In
general BN topology identification is an ill posed prob-
lem and thus we believe using these metrics to compare
different methods without additional downstream con-
text is irrelevant. However, we conclude from Fig. 2b
and Fig. 3 that the scores computed with graphical
NFs can be used to learn relevant BN structures.

5.2 Density estimation benchmark

In these experiments, we compare autoregressive,
coupling and graphical conditioners with no ¢;-
penalization on benchmark tabular datasets as intro-
duced by Papamakarios et al. [2017] for density estima-
tion. See Table 1 for a description. We evaluate each
conditioner in combination with monotonic and affine
normalizers. We only compare NFs with a single trans-
formation step because our focus is on the conditioner
capacity. We observed during preliminary experiments
that stacking multiple conditioners improves the per-
formance slightly, however the gain is marginal com-
pared to the loss of interpretability. To provide a fair
comparison we have fixed in advance the neural archi-
tectures used to parameterize the normalizers and con-
ditioners as well as the training parameters by taking
inspiration from those used by Wehenkel and Louppe
[2019] and Papamakarios et al. [2017]. The variable or-
dering of each dataset is randomly permuted at each
run. All hyper-parameters are provided in Appendix
D and a public implementation will be released on
Github.

First, Table 3 presents the test log-likelihood ob-
tained by each architecture. These results indicate
that graphical conditioners offer the best performance
in general. Unsurprisingly, coupling layers show the
worst performance, due to the arbitrarily assumed in-
dependencies. Autoregressive and graphical condition-
ers show very similar performance for monotonic nor-

Table 4: Average log-likelihood on test data over 3 runs,
under-scripted error bars are equal to the standard devia-
tion. Results are reported in nats, higher is better. The
results followed by a star are copied from the literature and
the number of steps in the flow is indicated in parenthesis
for each architecture. Graphical normalizing flows reach
density estimation performance on par with the most pop-
ular flow architectures whereas it is only made of 1 trans-
formation step.

Dataset POWER GAS HEPMASS MINIBOONE BSDS300

Graph.-UMNN (1) 0.624 g4 10.154 15 —14.174 13 —16.234 59 155.224 1

MAF (5) 0.144 g1 9.074 g1 —17.704 g1 —11.754 99 155.694 14

Glow* (10) 0.424 gy 12.244 g3 —16.994 oo —10.554 45 156.954 og
UMNN-MAF* (5) 0.634 o1 10.894 70 —13.994 o1 —9.674 13 157.984 g1
Q-NSF* (10) 0.664 7 12.914 g7 —14.674 g —9.724 o4 157.424 14

FFJORD* (5-5-10-1-2) 0.464 7 8.594 15 —14.924 gg —10.434 g4 157.404 19

malizers, the latter being slightly better on 4 out of the
5 datasets. Table 4 contextualizes the performance of
graphical normalizing flows with respect to the most
popular normalizing flow architectures. Comparing
the results together, we see that while additional steps
lead to noticeable improvements for affine normalizers
(MAF), benefits are questionable for monotonic trans-
formations. Overall, graphical normalizing flows made
of a single transformation step are competitive with
the best flow architectures with the added value that
they can directly be translated into their equivalent
BNs. From these results we stress out that single step
graphical NFs are able to model complex densities on
par with SOTA while they offer new ways of introduc-
ing domain knowledge.

Second, Table 5 presents the number of edges in the
BN associated with each flow. For POWER and GAS,
the number of edges found by the graphical condition-
ers is close or equal to the maximum number of edges.
Interestingly, graphical conditioners outperform au-
toregressive conditioners on these two tasks, demon-
strating the value of finding an appropriate ordering
particularly when using affine normalizers. Moreover,
graphical conditioners correspond to BNs whose spar-
sity is largely greater than for autoregressive condi-
tioners while providing equivalent if not better per-
formance. The depth [Bezek, 2016] of the equivalent
BN directly limits the number of steps required to in-
verse the flow. Thus sparser graphs that are inevitably
shallower correspond to NFs for which sampling, i.e.
computing their inverse, is faster.

6 Discussion

Cost of learning the graph structure The at-
tentive reader will notice that learning the topology
does not come for free. Indeed, the Lagrangian for-
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Table 5: Rounded average number of edges (over 3 runs)
in the equivalent Bayesian network. The graphical con-
ditioners lead to sparser BNs compared to autoregressive
conditioners.

Dataset PG H M B
Graph.-Aff. 15 26 152 277 471
Graph.-Mon. 15 27 159 265 1594
Coupling 9 16 110 462 992
Autoreg. 15 28 210 903 1953

mulation requires solving a sequence of optimization
problems which increases the number of epochs be-
fore convergence. In our experiments we observed
different overheads depending on the problems, how-
ever in general the training time is at least doubled.
This does not impede the practical interest of using
graphical normalizing flows. The computation over-
head is more striking for non-affine normalizers (e.g.
UMNNS) that are computationally heavy. However,
we observed that most of the time the topology recov-
ered by affine graphical NFs is relevant. It can thus
be used as a prescribed topology for normalizers that
are heavier to run, hence alleviating the computation
overhead. Moreover, one can always hypothesize on
the graph topology but more importantly the graph
learned is usually sparser than an autoregressive one
while achieving similar if not better results. The spar-
sity is interesting for two reasons: it can be exploited
for speeding up the forward density evaluation; but
more importantly it usually corresponds to shallower
BNs that can be inverted faster than autoregressive
structures.

Bayesian network topology learning Formal BN
topology learning has extensively been studied for
more than 30 years now and many strong theoreti-
cal results on the computational complexity have been
obtained. Most of these results however focus on dis-
crete random variables, and how they generalize in the
continuous case is yet to be explained. The topic of
BN topology learning for discrete variables has been
proven to be NP-hard by Chickering et al. [2004]. How-
ever, while some greedy algorithms exist, they do not
lead in general to a minimal I-map although allowing
for an efficient factorization of random discrete vectors
distributions in most of the cases. These algorithms
are usually separated between the constrained-based
family such as the PC algorithm [Spirtes et al., 2001]
or the incremental association Markov blanket [Koller
and Friedman, 2009] and the score-based family as
used in the present work. Finding the best BN topol-
ogy for continuous variables has not been proven to be
NP-hard however the results for discrete variables sug-
gest that without strong assumptions on the function

class the problem is hard.

The recent progress made in the continuous setting re-
lies on the heuristic used in score-based methods. In
particular, Zheng et al. [2018] showed that the acyclic-
ity constraint required in BNs can be expressed with
NO TEARS, as a continuous function of the adjacency
matrix, allowing the Lagrangian formulation to be
used. Yu et al. [2019] proposed DAG-GNN, a follow up
work of Zheng et al. [2018] which relies on variational
inference and auto-encoders to generalize the method
to non-linear structural equation models. Further in-
vestigation of continuous DAG learning in the context
of causal models was carried out by Lachapelle et al.
[2019]. They use the adjacency matrix of the causal
network as a mask over neural networks to design a
score which is the log-likelihood of a parameterized
normal distribution. The requirement to pre-define
a parametric distribution before learning restricts the
factors to simple conditional distributions. In contrast,
our method combines the constraints given by the BN
topology with NFs which are free-form universal den-
sity estimators. Remarkably, their method leads to
an efficient one-pass computation of the joint density.
This neural masking scheme can also be implemented
for NF architectures such as already demonstrated by
Papamakarios et al. [2017] and De Cao et al. [2019] for
autoregressive conditioners.

Shuffling between transformation steps As al-
ready mentioned, consecutive transformation steps are
often combined with randomly fixed permutations in
order to mitigate the ordering problem. Linear flow
steps [Oliva et al., 2018] and 1x1 invertible convolu-
tions [Kingma and Dhariwal, 2018] generalize these
fixed permutations. They are parameterized by a ma-
trix W = PLU where P is the fixed permutation ma-
trix, and L and U are respectively a lower and an up-
per triangular matrix. Although linear flow improves
the simple permutation scheme, they do still rely on
an arbitrary permutation. To the best of our knowl-
edge, graphical conditioners are the first attempt to
get completely rid of any fixed permutation in NFs.

Inductive bias Graphical conditioners eventually
lead to binary masks that model the conditioning com-
ponents of a factored joint distribution. In this way,
the conditioners process their input as they would pro-
cess the full vector.We show experimentally in Ap-
pendix E that this effectively leads to good inductive
bias for processing images with NFs. In addition, we
have shown that normalizing flows built from graphi-
cal conditioners combined with monotonic transforma-
tions are expressive density estimators. In effect, this
means that enforcing some a priori known indepen-
dencies can be performed thanks to graphical normal-
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izing flows without hurting their modeling capacity.
We believe such models could be of high practical in-
terest because they cope well with large datasets and
complex distributions while preserving some readabil-
ity through their equivalent BN.

Close to our work, Weilbach et al. [2020] improve
amortized inference by prescribing a BN structure
between the latent and observed variables into a
FFJORD NF, once again showing the interest of using
the potential BN knowledge. Similar to our work, Khe-
makhem et al. [2020] see causal autoregressive flows as
structural equation modelling. They show bivariate
autoregressive affine flows can be used to identify the
causal direction under mild conditions. Under similar
mild conditions, discovering causal relationships with
graphical normalizing flows could well be an exciting
research direction.

Conclusion We have revisited coupling and autore-
gressive conditioners for normalizing flows as Bayesian
networks. From this new perspective, we proposed
the more general graphical conditioner architecture for
normalizing flows. We have illustrated the importance
of assuming or learning a relevant Bayesian network
topology for density estimation. In addition, we have
shown that this new architecture compares favorably
with autoregressive and coupling conditioners and on
par to the most common flow architectures on stan-
dard density estimation tasks even without any hy-
pothesized topology. One interesting and straightfor-
ward extension of our work would be to combine it
with normalizing flows for discrete variables. We also
believe that graphical conditioners could be used when
the equivalent Bayesian network is required for down-
stream tasks such as in causal reasoning.
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A Optimization procedure

Algorithm 2 Main Loop

epoch < 0
while !Stopping criterion do
foreach batch X € Xiyqin do
loss «+— compUTELOsS(flow, X)
OPTIMIZE (flow, loss)

lossyaiia < COMPUTELOSS(flow, X¢est)
epoch < epoch + 1
UPDATECOEFFICIENTS(flow, epoch, 108S,47i4)
if 1ISDAGCONSTRAINTNULL(flow) then
PosTPROCESS(flow)

The method coMPUTELOsS(flow, X) is computed as described by equation (8). The opTIMIZE(flow, loss) method
performs a backward pass and an optimization step with the chosen optimizer (Adam in our experiments). The
post-processing is peformed by POSTPROCESS(flow) and consists in thresholding the values in A such that the
values below a certain threshold are set to 0 and the other values to 1, after post-processing the stochastic door
is deactivated. The threshold is the smallest real value that makes the equivalent graph acyclic. The method
UPDATECOEFFICIENTS() updates the Lagrangian coefficients as described in section 4.4.

B Jacobian of graphical conditioners

Proposition B.1. The absolute value of the determinant of the Jacobian of a normalizing flow step based on
graphical conditioners is equal to the product of its diagonal terms.

Proof. Proposition B.1 A Bayesian Network is a directed acyclic graph. Sedgewick and Wayne [2011] showed
that every directed acyclic graph has a topological ordering, it is to say an ordering of the vertices such that
the starting endpoint of every edge occurs earlier in the ordering than the ending endpoint of the edge. Let us
suppose that an oracle gives us the permutation matrix P that orders the components of g in the topological
defined by A. Let us introduce the following new transformation gp(zp) = Pg(P~!(Px)) on the permuted
vector p = Px. The Jacobian of the transformation gp (with respect to xp) is lower triangular with diagonal
terms given by the derivative of the normalizers with respect to their input component. The determinant of such
Jacobian is equal to the product of the diagonal terms. Finally, we have

| det(P)]

= P T34+ DV
| det(Jg,(or)| = | det (P det(ya))l gt
= |det(Jg(m))|a

because of (1) the chain rule; (2) The determinant of the product is equal to the product of the determinants;
(3) The determinant of a permutation matrix is equal to 1 or —1. The absolute value of the determinant of
the Jacobian of g is equal to the absolute value of the determinant of gp, the latter given by the product of
its diagonal terms that are the same as the diagonal terms of g. Thus the absolute value of the determinant of
the Jacobian of a normalizing flow step based on graphical conditioners is equal to the product of its diagonal
terms. O

C Experiments on topology learning

C.1 Neural networks architecture

We use the same neural network architectures for all the experiments on the topology. The conditioner functions
h; are modeled by shared neural networks made of 3 layers of 100 neurons. When using UMNNS for the normalizer
we use an embedding size equal to 30 and a 3 layers of 50 neurons MLP for the integrand network.
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Figure 4: Ground truth adjacency matrices. Black squares denote direct connections and in light grey is their transposed.
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C.2 Dataset description

Arithmetic Circuit The arithmetic circuit reproduced the generative model described by Weilbach et al.
[2020]. It is composed of heavy tailed and conditional normal distributions, the dependencies are non-linear. We
found that some of the relationships are rarely found by during topology learning, we guess that this is due to
the non-linearity of the relationships which can quickly saturates and thus almost appears as constant.

8 pairs This is an artificial dataset made by us which is a concatenation of 8 2D toy problems borrowed from
Grathwohl et al. [2018] implementation. These 2D variables are multi-modal and/or discontinuous. We found
that learning the independence between the pairs of variables is most of the time successful even when using
affine normalizers.

Tree This problem is also made on top of 2D toy problems proposed by Grathwohl et al. [2018], in particular
a sample X = [X1,..., X7]7 is generated as follows:

1. The pairs variables (X1, X5) and (X3, X4) are respectively drawn from Circles and 8-Gaussians;

[\]

. X5 ~ N(max(Xy, X3),1);

@

XG ~ N(mln(X3, X4), 1);

W

. X7 ~ 0.5N (sin(X5 + Xg),1) + 0.5N (cos(X5 + Xg), 1).

Human Proteins A causal protein-signaling networks derived from single-cell data. Experts have annoted 20
ground truth edges between the 11 nodes. The dataset is made of 7466 entries which we kept 5,000 for training
and 1,466 for testing.

C.3 Additional experiments

Fig. 5 and Fig. 6 present the test log likelihood as a function of the ¢;-penalization on the four datasets for
monotonic and affine normalizers respectively. It can be observed that graphical conditioners perform better
than autoregressive ones for certain values of regularization and when given a prescribed topology in many cases.
It is interesting to observe that autoregressive architectures perform better than a prescribed topology when an
affine normalizer is used. We believe this is due to the non-universality of mono-step affine normalizers which
leads to different modeling trade-offs. In opposition, learning the topology improves the results in comparison
to autoregressive architectures.

D Tabular density estimation - Training parameters

Table 6 provides the hyper-parameters used to train the normalizing flows for the tabular density estimation
tasks. In our experiments we parameterize the functions h’ with a unique neural network that takes a one hot
encoded version of ¢ in addition to its expected input  ® A;.. The embedding net architecture corresponds to
the network that computes an embedding of the conditioning variables for the coupling and DAG conditioners,
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Figure 5: Test log-likelihood as a function of ¢;-penalization for monotonic normalizers. The red horizontal line is the
average result when given a prescribed topology, the green horizontal line is the result with an autoregressive conditioner.
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Figure 6: Test log-likelihood as a function of ¢1-penalization for affine normalizers. The red horizontal line is the average
result when given a prescribed topology, the green horizontal line is the result with an autoregressive conditioner.
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for the autoregressive conditioner it corresponds to the architecture of the masked autoregressive network. The
output of this network is equal to 2 (2 x d for the autoregressive conditioner) when combined with an affine
normalizer and to an hyper-parameter named embedding size when combined with a UMNN. The number of

dual steps corresponds to the number of epochs between two updates of the DAGness constraint (performed as
in Yu et al. [2019]).

Dataset POWER GAS HEPMASS MINIBOONE BSDS300
Batch size 2500 10000 100 100 100
Integ. Net 3x 100 3 x 200 3 x 200 3 X 40 3 x 150
Embedd. Net 3x60 3x80 3x 210 3 x 430 3 X 630
Embed. Size 30 30 30 30 30
Learning Rate 0.001  0.001 0.001 0.001 0.001
Weight Decay  10~° 103 10~ 4 102 104
Ao 0 0 0 0 0

1

Table 6: Training configurations for density estimation tasks.

In addition, in all our experiments (tabular and MNIST) the integrand networks used to model the monotonic
transformations have their parameters shared and receive an additional input that one hot encodes the index
of the transformed variable. The models are trained until no improvement of the average log-likelihood on the
validation set is observed for 10 consecutive epochs.

E Density estimation of images

We now demonstrate how graphical conditioners can be used to fold in domain knowledge into NFs by per-
forming density estimation on MNIST images. The design of the graphical conditioner is adapted to images
by parameterizing the functions h’ with convolutional neural networks (CNNs) whose parameters are shared
for all ¢ € {1,...,d} as illustrated in Fig. 7. Inputs to the network h' are masked images specified by both
the adjacency matrix A and the entire input image x. Using a CNN together with the graphical conditioner
allows for an inductive bias suitably designed for processing images. We consider single step normalizing flows
whose conditioners are either coupling, autoregressive or graphical-CNN as described above, each combined with
either affine or monotonic normalizers. The graphical conditioners that we use include an additional inductive
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Masking operation from the adjacency matrix. CNN

c'(z)

Figure 7: Illustration of how a graphical conditioner’s output ¢’(z) is computed for images. The sample x, on the left,
is an image of a 4. The stripes denote the pixel x;. The parents of z; in the learned DAG are shown as white pixels on the
mask A; ., the other pixels are in black. The element-wise product between the image & and the mask A,,. is processed
by a convolutional neural network that produces the embedding vector ¢'(x) conditioning the pixel x;.

Model Neg. LL. Parameters Edges Depth
G-Affine (1) 1.814 o1 1x100 5016 103
(a) G-Monotonic (1)| 1.174 o3 1x106 2928 125
A-Affine (1) 2.124 oo 3x 109 306936 783 0 10 15 20 25 10 15 20 25
(b) A-Monotonic (1) | 1.374 g4  3.1x10° 306936 783 .P - » ‘. |!!...I “125
C-Affine (1) 2.394 o3 3x 100 153664 1 -10.0
C-Monotonic (1) | 1.674 g8  3.1x10° 153664 1 " |...-.I 75
©) A-Affine (5) 1.894 o1 6x 100 5X306936 5Xx783 15 " i |---..I
A-Monotonic (5) | 1.134 g5  6.6x10%  5x306936 5x783 |u.-..l 5.0

IﬂllIﬂl

20 § ..
Table 7: Results on MNIST. The negative log-likelihood I---_ -0.0

is reported in bits per pixel on the test set over 3 runs (a) (b)
on MNIST, error bars are equal to the standard devia-

tion. The number of edges and the depth of the equivalent  pjgure 8: The in (a) and out (b) degrees of the nodes in

Bayesian network is reported. Results are divided into 3 the equivalent BN learned in the MNIST experiments.
categories: (a) The architectures introduced in this work.

(b) Classical single-step architectures. (c) The best per-
forming architectures based on multi-steps autoregressive
flows.

bias that enforces a sparsity constraint on A and which prevents a pixel’s parents to be too distant from their
descendants in the images. Formally, given a pixel located at (i, 7), only the pixels (i 11,5 +13),11,l2 € {1,..., L}
are allowed to be its parents. In early experiments we also tried not constraining the parents and observed slower
but successful training leading to a relevant structure.

Results reported in Table 7 show that graphical conditioners lead to the best performing affine NFs even if
they are made of a single step. This performance gain can probably be attributed to the combination of both
learning a masking scheme and processing the result with a convolutional network. These results also show that
when the capacity of the normalizers is limited, finding a meaningful factorization is very effective to improve
performance. The number of edges in the equivalent BN is about two orders of magnitude smaller than for
coupling and autoregressive conditioners. This sparsity is beneficial for the inversion since the evaluation of the
inverse of the flow requires a number of steps equal to the depth [Bezek, 2016] of the equivalent BN. Indeed, we
find that while obtaining density models that are as expressive, the computation complexity to generate samples
is approximately divided by 5X784 ~ 40 in comparison to the autoregressive flows made of 5 steps and comprising
many more parameters.

These experiments show that, in addition to being a favorable tool for introducing inductive bias into NFs,
graphical conditioners open the possibility to build BNs for large datasets, unlocking the BN machinery for
modern datasets and computing infrastructures.
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F MNIST density estimation - Training parameters

For all experiments the batch size was 100, the learning rate 1073, the weight decay 107°. For the graphical
conditioners the number of epochs between two coefficient updates was chosen to 10, the greater this number
the better were the performance however the longer is the optimization. The CNN is made of 2 layers of 16
convolutions with 3 x 3 kernels followed by an MLP with two hidden layers of size 2304 and 128. The neural
network used for the Coupling and the autoregressive conditioner are neural networks with 3 x 1024 hidden
layers. For all experiments with a monotonic normalizer the size of the embedding was chosen to 30 and the
integral net was made of 3 hidden layers of size 50. The models are trained until no improvements of the average
log-likelihood on the validation set is observed for 10 consecutive epochs.
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