Jayaram, L. et al. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur. Respir. J. 10.1183/09031936.06.00137704 (2006). DOI: 10.1183/09031936.06.00137704
Anderson, G. P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 10.1016/S0140-6736(08)61452-X (2008). DOI: 10.1016/S0140-6736(08)61452-X
Fn, S. et al. Distribution of sputum cellular phenotype in a large asthma cohort: predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm. Med. 13, 11 (2013). DOI: 10.1186/1471-2466-13-11
Bakakos, P., Schleich, F., Alchanatis, M. & Louis, R. Induced sputum in asthma: from bench to bedside. Curr. Med. Chem. 10.2174/092986711795328337 (2011). DOI: 10.2174/092986711795328337
Berry, M. A. et al. The use of exhaled nitric oxide concentration to identify eosinophilic airway inflammation: an observational study in adults with asthma. Clin. Exp. Allergy 10.1111/j.1365-2222.2005.02314.x (2005). DOI: 10.1111/j.1365-2222.2005.02314.x
Schleich, F. N. et al. Exhaled nitric oxide thresholds associated with a sputum eosinophil count ≥3% in a cohort of unselected patients with asthma. Thorax 10.1136/thx.2009.124925 (2010). DOI: 10.1136/thx.2009.124925
Schleich, F. N. et al. Exhaled volatile organic compounds are able to discriminate between neutrophilic and eosinophilic asthma. Am. J. Respir. Crit. Care Med. 10.1164/rccm.201811-2210OC (2019). DOI: 10.1164/rccm.201811-2210OC
Higgins Keppler, E. A., Jenkins, C. L., Davis, T. J. & Bean, H. D. Advances in the application of comprehensive two-dimensional gas chromatography in metabolomics. TrAC Trends Anal. Chem. 109, 275–286 (2018). DOI: 10.1016/j.trac.2018.10.015
Bajoub, A. et al. A metabolic fingerprinting approach based on selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics: a reliable tool for Mediterranean origin-labeled olive oils authentication. Food Res. Int. 106, 233–242 (2018). DOI: 10.1016/j.foodres.2017.12.027
Španěl, P. & Smith, D. Progress in SIFT-MS: breath analysis and other applications. Mass Spectrom. Rev. 10.1002/mas.20303 (2011). DOI: 10.1002/mas.20303
Kumar, S. et al. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal. Chem. 85, 6121–6128 (2013). DOI: 10.1021/ac4010309
Beauchamp, J., Davis, C. & Pleil, J. Breathborne Biomarkers and the Human Volatilome (Elsevier, Amsterdam, 2020).
Wang, M. H. et al. Use of a least absolute shrinkage and selection operator (LASSO) model to selected ion flow tube mass spectrometry (SIFT-MS) analysis of exhaled breath to predict the efficacy of dialysis: a pilot study. J. Breath Res. 10, 046004 (2016). DOI: 10.1088/1752-7155/10/4/046004
Slade, E. A., Thorn, R. M. S., Lovering, A. M., Young, A. & Reynolds, D. M. In vitro discrimination of wound-associated bacteria by volatile compound profiling using selected ion flow tube-mass spectrometry. J. Appl. Microbiol. 123, 233–245 (2017). DOI: 10.1111/jam.13473
Spooner, A. D., Bessant, C., Turner, C., Knobloch, H. & Chambers, M. Evaluation of a combination of SIFT-MS and multivariate data analysis for the diagnosis of Mycobacterium bovis in wild badgers. Analyst 134, 1922–1927 (2009). DOI: 10.1039/b905627k
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007). DOI: 10.1007/s11306-007-0082-2
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007). DOI: 10.1007/s11306-007-0082-2
Stefanuto, P. H. et al. Advanced method optimization for volatile aroma profiling of beer using two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 1507, 45–52 (2017). DOI: 10.1016/j.chroma.2017.05.064
Purcaro, G. et al. SPME-GC×GC-TOF MS fingerprint of virally-infected cell culture: sample preparation optimization and data processing evaluation. Anal. Chim. Acta 10.1016/j.aca.2018.03.037 (2018). DOI: 10.1016/j.aca.2018.03.037
Španěl, P. & Smith, D. Quantitative selected ion flow tube mass spectrometry: the influence of ionic diffusion and mass discrimination. J. Am. Soc. Mass Spectrom. 12, 863–872 (2001). DOI: 10.1016/S1044-0305(01)00253-7
Smolinska, A. et al. Current breathomics—review on data pre-processing techniques and machine learning in metabolomics breath analysis. J. Breath Res. 8, 27105 (2014). DOI: 10.1088/1752-7155/8/2/027105
Brinkman, P. et al. Identification and prospective stability of electronic nose (eNose)–derived inflammatory phenotypes in patients with severe asthma. J. Allergy Clin. Immunol. 143, 1811-1820.e7 (2019). DOI: 10.1016/j.jaci.2018.10.058
Schleich, F. N. et al. Volatile organic compounds discriminate between eosinophilic and neutrophilic inflammation in vitro. J. Breath Res. 10, 016006 (2016). DOI: 10.1088/1752-7155/10/1/016006
Bos, L. D. J. et al. Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. Eur. Respir. J. 44, 188–197 (2014). DOI: 10.1183/09031936.00005614
Frank Kneepkens, C. M., Lepage, G. & Roy, C. C. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radic. Biol. Med. 17, 127–160 (1994). DOI: 10.1016/0891-5849(94)90110-4
Giri, A. et al. Molecular characterization of volatiles and petrochemical base oils by photo-ionization GC×GC-TOF-MS. Anal. Chem. 89, 5395–5403 (2017). DOI: 10.1021/acs.analchem.7b00124
Giri, A. et al. Compositional elucidation of heavy petroleum base oil by GC × GC-EI/PI/CI/FI-TOFMS. J. Mass Spectrom. 54, 148–157 (2019). DOI: 10.1002/jms.4319
Pesesse, R., Stefanuto, P. H., Schleich, F., Louis, R. & Focant, J. F. Multimodal chemometric approach for the analysis of human exhaled breath in lung cancer patients by TD-GC × GC-TOFMS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 11141115, 146–153 (2019). DOI: 10.1016/j.jchromb.2019.01.029
Simpson, J. L., Scott, R., Boyle, M. J. & Gibson, P. G. Inflammatory subtypes in asthma: Assessment and identification using induced sputum. Respirology 10.1111/j.1440-1843.2006.00784.x (2006). DOI: 10.1111/j.1440-1843.2006.00784.x
Bossuyt, P. M. et al. Towards complete and, accurate reporting of studies of diagnostic accuracy: the STARD initiative. Br. Med. J. 326, 41–44 (2003). DOI: 10.1136/bmj.326.7379.41
Chong, J., Yamamoto, M. & Xia, J. MetaboAnalystR 2.0: from raw spectra to biological insights. Metabolites 10.3390/metabo9030057 (2019). DOI: 10.3390/metabo9030057