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Multimodal combination 
of Gc × Gc‑HRtofMS and Sift‑MS 
for asthma phenotyping using 
exhaled breath
pierre‑Hugues Stefanuto1*, Delphine Zanella1, Joeri Vercammen2,3, Monique Henket4, 
florence Schleich4, Renaud Louis4 & Jean‑françois focant1

Chronic inflammatory lung diseases impact more than 300 million of people worldwide. Because 
they are not curable, these diseases have a high impact on both the quality of life of patients and the 
healthcare budget. The stability of patient condition relies mostly on constant treatment adaptation 
and lung function monitoring. However, due to the variety of inflammation phenotypes, almost 
one third of the patients receive an ineffective treatment. To improve phenotyping, we evaluated 
the complementarity of two techniques for exhaled breath analysis: full resolving comprehensive 
two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry 
(GC × GC-HRTOFMS) and rapid screening selected ion flow tube MS (SIFT-MS). GC × GC-HRTOFMS has a 
high resolving power and offers a full overview of sample composition, providing deep insights on the 
ongoing biology. SIFT-MS is usually used for targeted analyses, allowing rapid classification of samples 
in defined groups. In this study, we used SIFT-MS in a possible untargeted full-scan mode, where 
it provides pattern-based classification capacity. We analyzed the exhaled breath of 50 asthmatic 
patients. Both techniques provided good classification accuracy (around 75%), similar to the efficiency 
of other clinical tools routinely used for asthma phenotyping. Moreover, our study provides useful 
information regarding the complementarity of the two techniques.

According to the world health organization, asthma and chronic obstructive pulmonary disease (COPD) repre-
sent the most common chronic respiratory diseases, with respectively 235 and 65 millions of people concerned 
worldwide (WHO asthma and COPD Fact Sheets). These diseases are not curable. Various forms of treatment 
that help to dilate major airways and limit the shortness of breath can help control symptoms and increase the 
quality of life for patients. However, despite similar symptoms, different inflammation phenotypes exist for both 
diseases. As each phenotype requires different treatment approaches but are currently poorly diagnosed, about 
20–30% of asthmatic patients are on the wrong medication. Better phenotyping is therefore needed to improve 
the efficacy of prescribed treatments and preserve patients from suffering unnecessary side  effects1. It would 
allow quick adjustment of the treatment when needed. Moreover, it would provide insights regarding the impact 
of known and unknown risk factors, such as tobacco smoke, air pollution, occupational chemicals and dusts, 
and frequent lower respiratory infections during  childhood2.

Currently, the phenotyping of asthma and COPD relies on invasive sputum analysis or empirical  approaches3. 
Indeed, inflammatory phenotypes are defined by the American Thoracic Society based on the percentage of 
inflammatory cells present in the  sputum4. However, sputum analysis is invasive, expensive, and not available in 
most of the medical center. Due to the difficulties linked to sputum analysis, this method is not suitable for fre-
quent longitudinal monitoring of disease  evolution4. Other diagnosis alternatives have been developed using the 
measurement of the fraction of exhaled nitric oxide (FeNO) or blood cell  count5,6. Nevertheless, those techniques 
can only rule in eosinophilic phenotype, without differentiating between the  others4–6. Recently, we validated a set 
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of volatile markers present in the breath of asthmatic patients to differentiate between inflammatory  phenotypes7. 
This discovery represents an important step forward in the quest of a non-invasive rapid diagnostic method.

The recent evolution of analytical technologies dedicated to separation and measurement of volatile organic 
compounds (VOCs) has reinforced the branch of “omics” sciences that focus on low molecular weight analytes. 
On one side, separation science based on multidimensional methods such as comprehensive two-dimensional 
gas chromatography (GC × GC) appeared as one of the methods of choice for the characterization of complex 
mixtures of (semi)volatile chemicals, especially when coupled to high-resolution time-of-flight mass spectrom-
etry (HRTOFMS)8. On another side, direct introduction instruments such as selected ion flow tube MS (SIFT-
MS) offers now the capacity to perform both targeted and non-targeted analyses within a few minutes (9–11). At 
the price of high cost equipment and limited adaptability to routine medical usage, GC × GC-HRTOFMS offers 
the possibility to almost completely characterize the VOC sample composition. This is of prime importance for 
chemical support of systems biology, but it also offers the possibility for the creation of specific lists of biomarkers 
of disease. For large scale screening, SIFT-MS can generate compositional patterns from direct sample introduc-
tion concurrently to other established routine medical actions. These two orthogonal approaches can therefore 
be considered for pathology screening in a population of patients and should ideally conduct to identical sample 
classifications. They however have never been directly used and compared over an identical set of patients.

The aim of this study was to evaluate the complementarity of using untargeted GC × GC-HRTOFMS and 
SIFT-MS, two commonly used approaches in the field, for exhaled breath analysis. This evaluation was based on 
the instruments set up and performances to answer a clinical question. To achieve this complementarity evalu-
ation exhaled breath from 50 asthmatic patients were analyzed in parallel by both techniques, with the aim to 
classify patients according to their asthma phenotype. As a reference, asthma phenotypes were established using 
sputum analysis. The study design is displayed in Fig. 1.

Figure 1.  Study analytical design and patient population. Breath samples were collected using gas sampling 
bags. For GC × GC-HRTOFMS analyses, the bags were transferred onto thermal desorption tubes prior to 
injection. For SIFT-MS, the bags were directly deflated into the instrument. Data were analyzed using identical 
processing workflows and outcomes of GC × GC-HRTOFMS and SIFT-MS analyses were judged against 
each other to serve as a reference in the field. We observed that both approaches offered similar classification 
capacities.
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Results
Population characteristics. The patient population characteristics are described in Table 1. This popula-
tion represents a sub-group of a larger exhaled breath asthma study conducted by Schleich et al.7. The studied 
population contained three phenotypes, namely: eosinophilic, neutrophilic and paucigranulocytic asthmatic 
patients. The phenotypes were established using the gold standard method, sputum cell count (see method,7). In 
this study, we evaluated the capabilities of GC × GC-HRTOFMS and SIFT-MS to identify eosinophilic patients 
in an asthma population. The population was balanced between those two groups: eosinophilic (n = 18) vs. other 
phenotypes (n = 22) (neutrophilic and paucigranulocytic). In Table 1, it can be observed that four parameters 
were significantly different (i.e., p < 0.05) between the groups. These parameters were fractional exhaled nitric 
oxide (FeNO) level, blood eosinophils cells (%), sputum eosinophils cells (%), and sputum neutrophils cells (%). 
These observations were in accordance with the typical asthma population demography. Indeed, FeNO and 
blood cell count are two complementary approaches to sputum cells count for asthma phenotyping.

In addition to this sample set, technical replicates were also generated to evaluate and control the analytical 
variability. One technical replicate was used for GC × GC-HRTOFMS and six for SIFT-MS. The difference in 
number is linked to the technical difficulties to obtain replicate samples from patients. For GC × GC-HRTOFMS, 
the entire Tedlar bag had to be emptied onto the  tubes7, although for SIFT-MS several consecutive measurements 
could be carried out from one single bag.

Unsupervised screening. The first step of the pre-processing focuses on the curing of the high-dimen-
sional data sets. For the 40 samples considered, the cleaned raw data matrices contained 456 and 705 features for 
GC × GC-HRTOFMS and for SIFT-MS, respectively. As these types of data sets are highly susceptible to over-
fitting, a careful processing had to be implemented. PCA were performed on both data set to verify the structure 
of the data and assess the effect of the pre-processing on data integrity (Fig. 2). No particular clustering (e.g. 
batch effect, population differences) were observed. From this point, data sanity checks were performed. For 
GC × GC-HRTOFMS, chromatographic artefacts (column bleed, ghost peaks) and related non-representative 
MS signals, as well as irrelevant known contaminants were removed from data matrices. This allowed to reduce 
the number of features from 456 to 202. For SIFT-MS, data were cured to remove empty ion channels resulting 
from the absence of MS signals at certain mass-to-charge (m/z) ratios. This reduced the number of SIFT-MS 
features to 600. After these data reduction steps, additional PCA visualizations were carried out to validate the 
procedure (Fig. 2 and Fig. SI-1). The GC × GC-HRTOFMS pre-processing was optimized elsewhere and briefly 
consisted in probabilistic quotient normalization (PQN), log transform, and auto-scaling7. The SIFT-MS data 
were produced using an untargeted full scan mode on three different precursor ions  (H3O+,  O2

+,  NO+). Full scan 
SIFT-MS in breath is generally used to reconstruct target information using ion intensity and ion  ratio12. In this 
study, the idea is to process every ion channel from each precursor as an independent variable. This approach 
has been used previously but a clear data processing workflow still needs to be  established13–15. Such an original 
approach necessitated the establishment of a dedicated pre-processing strategy. Each ion channel of the raw data 
was normalized using a unique algorithm (see method). This algorithm ensured the production of a linear and 

Table 1.  Demographic information for the study population (mean and standard deviation); FEV1 and FeNO 
(media and min–max range). The p-values for all the demographic information were calculated using chi-
squared (for categorical variables) and Wilcoxon–Mann–Whitney rank sum test (for continuous variables). 
The significant threshold was set at p < 0.05. ACQ, asthma control questionnaire, ICS therapy, inhaled 
corticosteroid, FEV1/FVC, Forced expiratory volume in 1 s/Forced vital capacity (FVC).

Characteristics Eosinophilic Others p-value

N 18 22

Age 59 (12) 53 (15) 0.153

Gender, F (%) 72 55 0.386

Non-smoker, Y (%) 39 55 0.324

Ex-smoker, Y (%) 44 23 0.145

Smoker, Y (%) 17 23 0.634

Size (cm) 165 (10) 167 (10) 0.355

Weight (kg) 76 (17) 75 (17) 0.744

Atopy (%) 33 41 0.908

ACQ 2 (1) 2 (1.2) 0.0890

ICS therapy, Y (%) 50 32 0.385

FEV1 (% pred) 89.5 (19–123) 87 (58–142) 0.775

FEV1/FVC, % 91 (15.2) 96 (13.3) 0.314

Blood neutrophils, % 54 (5.7) 59 (17.3) 0.193

Blood eosinophils, % 5 (2.1) 2 (2.1) 3.73E-03

FeNO (ppb) 35.5 (6–128) 15 (5–58) 0.0147

Sputum neutrophils, % 45 (14.4) 62 (21.2) 5.35E-03

Sputum eosinophils, % 19 (14.1) 1 (1.0) 7.01E-08
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quantitative response from the mass spectrometer for each ion channel, allowing the processing of the full scan 
matrix without further need for normalization of ion to ion response. Following this step, all empty ion chan-
nels were removed from the matrix. Small value imputation was then used for the remaining missing values. 
Next, signals across all exhaled breath samples were normalized using PQN. This median-based normalization 
minimized the variability related to the entire sampling procedure. Finally, the data were log-transformed and 
auto-scaled. As displayed in Fig. 2, the non-supervised structure verification PCA of all the features did not show 
any apparent clustering. Moreover, the PCA did neither display any potential outlier compounds, ensuring the 
quality of the pre-processing.

Following the pre-processing optimization, classification accuracy and model, figures of merits were evalu-
ated. In order to compare the results with the previous  findings7, Random Forest was used as classification 
algorithm. Based on the study population, we have evaluated the capacity of both analytical methods to identify 
the eosinophilic phenotype in an asthmatic cohort.

In a first approach, the classification capabilities of Random Forest with no feature selection was evaluated 
for GC × GC-HRTOFMS and SIFT-MS data set (Table 2). The resulting out of bag (OOB) error was 46.3% and 
34.8% for GC × GC-HRTOFMS and SIFT-MS respectively. Moreover, the cross-validation (i.e., permutation test) 
indicated overfitting of the data due to the high dimensionality. In order to move forward and establish a suitable 
classification model for each technique, we selected significant features based on their mean decrease accuracy 
(MDA). All features above 0.0015 MDA were kept for subsequent model building, which resulted in the selec-
tion of 10 features and 9 ion channels from the GC × GC-HRTOFMS and SIFT-MS data sets, respectively. For 
the GC × GC-HRTOFMS features, 6 out of 10 were overexpressed in eosinophilic patients. For SIFT-MS, 7 over 
9 ion channels were overexpressed in eosinophilic patients, even if none was significantly different between the 
two groups using Fisher Ratio or T-test univariate analysis. The intensity pattern can be observed using heat map 
visualization (Figs. SI-3, SI-4).

Supervised screening. Based on the selected features from the Random Forest screening, a new classifica-
tion model was built for each instrumental approach. In order to achieve a robust classification, data were split 

Figure 2.  Unsupervised PCA plot for SIFT-MS (left) and GC × GC-HRTOFMS (right) illustrating the absence 
of outliers or particular clustering trends.

Table 2.  Figures of merit for the different models (unsupervised and supervised) using GC × GC-HRTOFMS 
and SIFT-MS.

Unsupervised random forest Supervised random forest

GC × GC-HRTOFMS SIFT-MS GC × GC-HRTOFMS SIFT-MS

Accuracy (%) 53.66 65.22 75.61 76.09

Sensitivity 0.39 0.40 0.72 0.75

Specificity 0.65 0.85 0.78 0.77

Positive predictive value 0.47 0.67 0.72 0.71

Negative predictive value 0.58 0.65 0.78 0.80
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between training and test sets in a 2:1 ratio. This split was performed to avoid overfitting of the models. Moreo-
ver, permutation tests were conducted to ensure the validity of the approach.

For the GC × GC-HRTOFMS classification, 10 significant compounds were used to build the model. The 
model performances are displayed in Fig. 3. The area under the receiver operating characteristic curve (AUROC) 
was 73%. In terms of accuracy, the model reached 76%. The other figures of merit are given in Table 2. Based on 
those selected ion channels, a PCA was built to visualize the separation between the two groups. Compared to 
the unsupervised PCA (Fig. 2, previous section), a trend between the two groups can be observed when visual-
izing 42% of the variance. Nevertheless, a strong overlap exists between the two 95% confidence interval ellipses.

For SIFT-MS, 9 significant ion channels were used to build the model (Table 2). The AUROC (87%) was 
somewhat higher than for GC × GC-HRTOFMS and the model reached 76% of accuracy. Based on those selected 
ion channels, a PCA was built to visualize the separation between the two groups. Compared to the unsuper-
vised PCA (Fig. 2 and Fig. 3, previous section), the PCA built on the 9 ion channels (Fig. 3) shown a clear trend 
between the two groups when visualizing 45.7% of the variance.

GC × GC-HRTOFMS for identification. The 10 selected compounds from the GC × GC-HRTOFMS data 
set were identified based on different criteria: mass spectra database (match factor and probability), linear reten-
tion indices, and accurate mass. An MSI identification confidence Level of 2 or 3 was obtained for all compounds 
(Table 3)16. To reach Level 2, in addition to a mass accuracy below 5 ppm, a compound had to show a mass 
spectral similarity value above 800 and a probability over 50%. Moreover, in the particular case of nonanal, 
a pure analytical standard was injected using the exact same GC × GC-HRTOFMS conditions to confirm its 
identity with an MSI Level 1 confidence. Nonanal was previously identified as an effective biomarker for asthma 
 phenotyping7.

Figure 3.  Supervised classification model outcomes using the most significant features (above 0.0015 
MDA) using Random Forest algorithm (Top: GC × GC-HRTOFMS; Bottom SIFT-MS). Receiver operating 
characteristic curves (left) show AUROC values of 73% and 87% for GC × GC-HRTOFMS and SIFT-MS, 
respectively. PCA score plots (right) depict the apparent differentiation between the eosinophilic phenotype and 
the others.
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SIFT-MS for each precursor. In SIFT-MS, the chemistry taking place behind the ionization process is dif-
ferent for each precursor  ion9. For this reason, as we worked in untargeted mode, the potential of each precursor 
ion (in this study:  H3O+,  NO+, and  O2

+) was studied separately and the correlation between them was evaluated. 
By selecting the significant ion channels for each individual precursor data, and combining them in a single clas-
sification model, it was possible to achieve good classification accuracies (Fig. SI-2). Interestingly, there was a 
complete overlap between 8 of the 9 significant features that were also identified using single precursor process-
ing (see Tables SI-1, SI-2. The potential behind the individual precursor processing and data fusion is of great 
interest and will be pursued in the future of full scan SIFT-MS development.

Discussion
First, authors want to state that the present study aimed to evaluate the potential of GC × GC-HRTOFMS and 
SIFT-MS for breath analysis and exploit their complementarity to advance the exhaled breath research field. 
Instrument ranking or benchmarking was out of the scope of the study.

GC × GC-HRTOFMS is ideal for untargeted screening of small  molecules8. It has shown to be a valuable tool 
in  volatolomics8 as it can separate and identify (with MSI Level 2  confidence17) hundreds of compounds in a 
single run. It aims to generate chemically resolved data sets to contribute to systems biology of diseases and may 
provide insights in important metabolic  pathways8. GC × GC-HRTOFMS comes with a certain level of complex-
ity, which requires a minimum level of expertise to ensure the successful usage of the data  sets8,18,19. This complex-
ity and the cost make it not directly adapted for daily routine hospital screening but rather for clinical research.

SIFT-MS is a direct-introduction (direct infusion of a gas sample without any chromatographic separation 
prior to ionization) instrument that rapidly (about 10 times faster than GC × GC-HRTOFMS, i.e. 5 min) provides 
a pattern-based sample composition. The SIFT-MS used in this study performed soft ionization using three 
precursor ions  (H3O+,  NO+, and  O2

+) and had the capacity to provide selective mass spectra identification and 
direct quantification for any compounds of which reaction schemes and associated reaction rate constants are 
 available10,20. For this reason, it is an instrument of choice for targeted screening of  VOCs10. Recently, SIFT-MS 
has been used for untargeted screening, using full scan MS  mode9,13–15. It is this untargeted full scan capacity 
that makes SIFT-MS a potential candidate for pattern-based breath profiling. The instrumental compacity and 
simplicity of use make SIFT-MS a good candidate as point of care breath screening system.

The complementarity between these two techniques for exhaled breath screening was assessed using a sub-
group from a breath-based asthma clinical  study7.

To compare the classification abilities of both techniques, models were build based on Random Forest algo-
rithms. Random Forest is a machine learning tool based on group of classification trees. This method has dem-
onstrated high stability for high dimensionality  data21. For both analytical techniques, the models were overfitted, 
providing poor accuracy. An interesting observation is the high false negative rate (around 0.60) from both 
models. A potential explanation is the low average probability of classification (0.4–0.6) obtained on the full 
data matrix. Such a low probability is linked to the high-dimensional structure of our data sets. Indeed, both 
methods generate hundreds of variables from which most of them are noise. To overpass this limitation, these 
untargeted models were used to select the most significant features. Moreover, new Random Forest models were 
built on a training set. Their efficiency and robustness were evaluated on a test set. The data splitting represents a 
first step in the validation process of the model prior to a replication study. The AUROC value of 73% obtained 
for GC × GC-HRTOFMS is in agreement with previous studies focusing on the identification of eosinophilic 
asthma based on the measurement of VOCs in exhaled  air7,22. For the SIFT-MS, the model generated an AUROC 
of 87%, which outperformed the GC × GC-HRTOFMS. This performance underlines the high potential for rapid 
pattern-based screening of asthma population. Nevertheless, all the other figures of merit were similar (Table 2). 
The lack of large-scale untargeted study on breath using these two techniques makes difficult to compare those 
numbers with the literature. Indeed, GC × GC-HRTOFMS is relatively new in the field of breath analysis. The 
AUROC values obtained here are in accordance with performances of other asthma phenotyping methods and 
further demonstrate the interest of GC × GC-HRTOFMS and SIFT-MS in that  context7,22.

Table 3.  List of the top 10 most significant features (compounds) identified by mean decreased accuracy 
applying Random Forest algorithm on the GC × GC-HRTOFMS data set. For each feature, important 
identification metrics are provided.

Feature identification CAS# 1tR (w) 2tR (s) MS library match MS library probability MSI level

Butadioic acid dimethyl ester 106-65-0 1410 0.895 917 96.8 2

Nonanal 124-19-6 1542 2.295 930 75.4 1

6-Octen-1-ol, 3,7-dimethyl-, acetate 150-84-5 1982 2.403 942 31.7 3

Cyclopentane, 1,1,3,3-tetramethyl- 50,876-33-0 1210 1.524 760 9.5 3

Decane, 2,5,9-trimethyl 62,108-22-9 990 1.385 730 9.2 3

1,7-Octanediol, 3,7-dimethyl- 107-74-4 1478 2.815 855 17.3 3

5,9-Undecadien-2-one, 6,10-dimethyl- 689-67-8 2178 2.81 930 48.7 3

Acetic acid, phenyl ester 122-79-2 1478 0.93 831 59 2

Diphenyl ether 101-84-8 2106 0.655 823 56.6 2

1-Nonene 124-11-8 982 1.49 925 24.3 3
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One of the main advantages of GC × GC-HRTOFMS is its capacity for compound identification. This allows 
metabolic profiling and has the potential to be a complement in both diagnosis and understanding of the molecu-
lar mechanisms involved in the disease occurrence. From the 10 significant features, the identification of nonanal 
was validated through a neat standard injection. three compounds had a high confidence level of identification 
(level 2) and the last six had a lower confidence (level 3). These five compounds were identified as highly branched 
chemicals. This type of molecule usually undergoes strong fragmentation during the electron ionization (EI) 
process and generates non-specific mass spectra. This is a general problem for the research of biomarkers in 
breath, where a large number of high potential compounds are often  branched23–25. The implementation of softer 
ionization techniques, compared to EI, would reduce fragmentation and preserve higher signals of parent ions, 
hence improving identification  procedures26,27. Among the compounds with a high level of identification, differ-
ent chemical families are present, namely 2 esters, 1 ketone, 1 ether, and 1 aldehyde. Esters and aldehydes have 
earlier been reported to be possibly generated during lipid degradation in the  lung24. However, no study has yet 
clearly identified specific degradation pathways in the context of the production of volatile metabolites. In this 
list, nonanal has already demonstrated its importance in a previous  study7. Moreover, it has the second high-
est MDA from the random forest study. This compound is of high interest as it has been detected in a previous 
asthma breath  study7 where it was overexpressed in the non-eosinophilic asthma phenotype. Ongoing studies 
are investigating the role and origin of nonanal in inflammatory mechanisms.

The SIFT-MS instrument relies on a different technological approach. On the sampling side, SIFT-MS allows 
direct sample infusion into the MS, which deletes the need of transferring the breath onto a TD tube. TD tubes 
are highly efficient, but they induce a selectivity bias by trapping compounds in a certain range of volatility. On 
the technological side, SIFT-MS relies on the utilization to up to 10 chemical precursors to ionize the molecules 
present in the samples. The positive and negative chemical ionization mechanisms generate soft fragmentation, 
which maintains identification information. In addition, the combination of different ionization chemistries 
generates specific fragmentation that make SIFT-MS a powerful tool for targeted  analysis10. This specificity has 
also a big added value for untargeted pattern based method, allowing classification model development based 
on specific ion channels acquired with specific  precursors9. Due to the technology progress on the precursor’s 
chemistry and the development of untargeted SIFT-MS analysis, there is a growing need for optimization and 
processing methods allowing the selection of the best precursors and informative ion channels. Indeed, untar-
geted full scan SIFT-MS has been used on breath in the past, but the demonstration of its potential and the 
establishment of the processing workflow still need development. Previous studies used full scan SIFT-MS for 
correlation calculation with blood markers or to reconstruct target signal, each approach is valid but requires a 
specific processing  workflow12,13.

In this study, 9 ion channels were selected to build a classification model. These ions are not significantly 
different alone but they have a group-based separation capacity (see Figs. SI-3, SI-4). Interestingly, 5 features 
out of 9 are coming from  NO+ ionization (see Table SI-1). One could hypothesize that the ionization chemistry 
of  NO+ is suitable for the compounds contained in exhaled breath from eosinophilic patients. In addition, the 
features selected from the SIFT-MS are almost the same regardless the approach used for the selection, namely: 
individual precursor or full matrix processing (8 over 9 are found, see Tables SI-1, SI-2). This underlines the 
robustness of this selection process for untargeted SIFT-MS data.

Finally, one could ask why the makers identified by GC × GC-HRTOFMS were not extracted from the SIFT-
MS full scan data in order to evaluate their classification capacity through another analytical technique. This 
direct transfer is challenging because the two techniques rely on different technology (e.g. sample introduction, 
ionization techniques). It would require model building on exact quantification with both instruments.

This study suffers from two limitations that were accounted for during the analytical workflow in order to 
minimize their impact on the findings. First, concerning breath sampling, the dual bag approach could have gen-
erated some temporal trend in the chemical composition of samples. However, 1st and 2nd bags were randomized 
prior to GC × GC-HRTOFMS or SIFT-MS analyses. Second, the population size was reasonable but somewhat 
limited (i.e. 50 patients, 40 eligible). Because of this limited number, the feature selection was performed on the 
same population than the model building. However, compared to other breath studies where sample numbers 
often range between 20 and 30 patients per group, a set of 40 duplicated patients is reasonable for such a proof-
of-concept  study11,28. In addition, multiple cross-validation and data splitting (between training and test sets) 
were performed during the data processing to enhance general robustness.

In conclusion, we have demonstrated the efficiency and the complementarity of GC × GC-HRTOFMS and 
SIFT-MS for asthma phenotyping based on exhaled breath analysis, both techniques provided good classifica-
tion capacity with their own advantages. On one side, we have a complex chromatographic technique providing 
a clear view of the sample chemical composition that allows a better understanding of the ongoing metabolic 
mechanisms. On the other side, SIFT-MS is a rapid, pattern-based screening technique, which has the potential 
to fulfill the role of clinical tool for breath-based diagnosis.

Method
Patient information. The patients included in this study were part of larger clinical validation of breath 
biomarkers. In short, patients were recruited from the asthma clinic of Liège between October 2014 and April 
2018. The recruitment aimed to collect breath sample from 50 patients from which asthma phenotype could 
be established using sputum granulocytic cell  count29. The final study population can be found in Table 1. The 
patient recruitment was based on the STARD  guidelines30. All the medical information can be found in a previ-
ous  report7.
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The study was approved by the Ethics Committee of CHU Liège B70720096732, reference Liège 2009/161 and 
each patient signed an informed consent. All methods were carried out in accordance with relevant guidelines 
and regulations.

Breath sampling. For both analytical approaches, exhaled breath samples were collected using 5 L inert 
Tedlar bags. Bags were washed twice with high-purity nitrogen (Air Liquide, Liège, Belgium) prior to the sam-
pling, in order to eliminate most of the background. The exhaled breath sampling was performed in the same 
room across the entire study and background controls were taken. Subjects were asked to inhale, hold their 
breath for 5 s and subsequently fully exhale into the sampling bag.

Two bags were collected, one for each technique. SIFT-MS samples were injected by connecting the bag 
directly to the inlet of the instrument. For the GC × GC-HRTOFMS, the content of the bag was transferred onto 
a thermal desorption (TD) tube prior to be injected into the instrument. The use of a TD tube is required in order 
to store the sample before injection. Moreover, it provides a pre-concentration of the sample and the possibility 
to quickly inject into the GC system Fig. 1. The sampling procedure was described by Schleich and  colleagues7.

Analytical instrumentation and parameters. GC × GC‑HRTOFMS analytical conditions. All samples 
were thermally desorbed using a MARKES TD 100 XR (MARKES, UK). TD tubes (Tenax TA-Carbopack B) 
were heated at 290 °C for 5 min with a split of 20:1. The split fraction was recollected on the tube for potential 
second analysis. The chromatographic separation was performed on a Pegasus GC-HRT 4D (LECO Corpo-
ration, St. Joseph, MI, USA) equipped with a secondary oven and a quad-jet, dual-stage thermal modulator. 
Acquisition was controlled using ChromaTOF-HRT version 4.2.3.1. The column set was made of two capillary 
columns connected, a Rxi-624Sil MS (30 m × 0.25 mm i.d., 1.40 µm df) combined with a Stabilwax (Restek Cor-
poration) (2 m × 0.25 mm i.d., 0.50 µm df). The connection between the two columns was made using a SilTite 
µ-union (Trajan Scientific and Medical, Australia). A constant helium flow of 1.00 mL/min was used throughout 
the run. The initial main temperature oven was 35 °C and was increased to 240 °C at a rate of 5 °C/min (total 
51 min). The secondary oven offset was + 5 °C in relation to the primary oven temperature and the modulator 
offset was + 15 °C in relation to the secondary oven. A 4 s modulation period  (PM) was used with a 0.80 s hot 
pulse time. The MS transfer line was held at 220 °C. An acquisition delay of 300 s was used. The mass acquisi-
tion range was 29–450 m/z with an acquisition rate of 200 Hz and a 2 kHz extraction frequency. The ion source 
temperature was 250 °C. The electron ionization energy was 70 eV and an emission current of 1.0 mA was used. 
The detector was tuned prior to each sequence. The mass resolution achieved during each tune always exceeded 
30,000. The tune compound valve was opened during the entire run duration for constant mass calibration using 
perfluorotributylamine (PFTBA).

A full validation and quality control procedure was performed during the study using seven compounds 
representing important asthma biomarkers. All control charts and figures of merit are available in a previous 
 publication7.

SIFT‑MS analytical conditions. For the SIFT-MS analysis, the Tedlar bag containing the exhaled breath sample 
was directly connected to the heated instrument inlet (Voice200 Ultra, Syft Technologies, Christchurch, New 
Zealand). The inlet is equipped with a capillary restriction allowing controlled introduction of the breath sample 
into the flow tube by means of the instrument vacuum. The reagent ions  (H3O+,  NO+ and  O2

+) were generated by 
a microwave air discharge at 0.5 Torr and selected by means of a short quadrupole mass filter after which they are 
consecutively injected into the flow tube in a stream of Helium as carrier gas. In the flow tube, sample analytes 
and precursor ions combine giving rise to unique product ions, which are separated from each other by means 
of a second quadrupole. The instrument was applied in full scan mode using three acquisition repeats in a single 
run in the mass-to-charge ratio (m/z) range of 15–250 amu and a dwell time of 100 ms. The full scan data (ion 
counts per second, cps) averaged over the sampling time for each m/z value was used for the statistical analyses.

Data pre-processing. Chromatographic alignment and feature identification. All the raw data were ex-
ported in a netCDF format from the ChromaTOF-HRT software. They were process using the GC Image HR 
2.5 software suites (Zoex Corporation, Houston, TX, USA). A specific GC Image-based process was then devel-
oped using GC Project and Image investigator features. First, a cumulative image was generated, and the peak 
detection parameters were set, using a minimum area of 150 was performed. The detected features were then 
tentatively identified based on the mass spectra using the National Institute of Standards and Technology (NIST) 
2014 and Wiley 10 libraries with a match factor threshold of minimum 800. Moreover, the identification was 
reinforced by the accurate mass information. From there, a template was built and all contaminant compounds 
(e.g. column bleed and background compounds) were removed. This template was then used to align all samples. 
The resulting peak table was finally exported for further statistical processing in a third-party.

SIFT‑MS signal normalization. The SIFT-MS output data was normalized using Syft Technologies proprietary 
algorithm. In brief, each individual ion channel is normalized to a linear quantitative signal that takes into 
account both reagent ion and product ion yields in function of lens voltages, temperature and molecular weight. 
More information regarding the normalization can be found in supplementary materials. The capacity of SIFT-
MS to generate quantitative results without external calibration represents a huge advantage in the context of 
clinical implementation. Moreover, it ensures direct comparison of every ion channels during the statistical 
processing, all sample to sample variations are coming from the sample itself.
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Multivariate analysis. Based on the unbalanced patient population, the study was focused on the evalua-
tion of the capability of the two analytical techniques for the discrimination of the eosinophilic phenotype from 
the rest of the asthmatic population, i.e. paucyganulocitic and neutrophilic phenotypes. This rule in approach 
can be easily compared with other asthma diagnostic approaches, such as FeNO or blood cell  count6,7. Moreo-
ver, to be able to compare the classification capacity of both approaches, a common processing workflow was 
designed (Fig. 4). The data processing workflow contains two main parts: unsupervised and supervised screen-
ings. The first one aims to evaluate the structure of the data obtained with each analytical technique. The second 
one evaluates the classification accuracy of the models for each instrumental technique. To achieve that, we 
used Random Forest classification algorithms for supervised and unsupervised classification. Due to the limited 
population of the study, different cross validation steps were included. First, the figure of merits from the dif-
ferent models were obtained after splitting the data between a training and a test set. Moreover, random sample 
labeling, and feature picking were tested. These two tests provided classification metrics corresponding to ran-
dom assignment (around 50%).

The data processing was conducted using in the open source software for statistics, R (The R Foundation for 
Statistical Computing, V3.4.3, Vienna, Austria) and the online platform  MetaboAnalyst31.

Data availability
The data described in the manuscript are available on reasonable request to the corresponding author.
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