[en] 1. Paedomorphosis, a developmental heterochrony involving the retention of larval traits at the adult stage, is considered a major evolutionary process because it can generate phenotypic variation without requiring genetic modifications. Two main processes underlie paedomorphosis: neoteny, a slowdown of somatic development, and progenesis, a precocious maturation associated to body size reduction. Being essentially a truncation of ontogeny, progenesis has often been deemed an evolutionary dead-end with advantages attributed to precocious reproduction or small body size required in specific environmental contexts (e.g. parasitism, interstitial life), but there is a lack of studies on the immediate ecological consequences of progenesis.
2. Because body size is a key factor determining trophic ecology in animals, we hypothesized that progenesis might intrinsically promote ecological opportunity via body size reduction (i.e. ‘the trophic advantage of progenesis’ hypothesis). We tested this hypothesis in facultatively progenetic palmate newts (Lissotriton helveticus) using stable isotope niche modelling and diet reconstruction in conjunction with traditional stomach content analyses and body condition assessment.
3. We show that not only did progenetic individuals occupy a different trophic niche than metamorphic individuals in all populations, but the smaller they were compared to metamorphs due to progenesis, the more different they were in terms of trophic ecology, with no negative effect on their body condition.
4. Altogether, the results suggest that via body size reduction, progenesis may generally act as an intrinsic factor of ecological opportunity, allowing the use of existing but previously unavailable resources, even in habitats where seemingly little opportunity exists. We argue that beyond the classically recognized fitness advantages of progenetic development, this process may also generally bring an immediate trophic advantage via body size reduction, which would have important implications to understand the evolution and adaptiveness of this process in many different taxa, from marine meiofauna to primates.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Lejeune, Benjamin ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens
Bissey, Lucie; Université de Liège - ULiège > Laboratoire d'Ecologie et de Conservation des Amphibiens
Didaskalou, Emilie; Université de Liège - ULiège > Laboratoire d'Ecologie et de Conservation des Amphibiens
Sturaro, Nicolas ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Lepoint, Gilles ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Denoël, Mathieu ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens
Language :
English
Title :
Progenesis as an intrinsic factor of ecological opportunity in a polyphenic amphibian
Publication date :
February 2021
Journal title :
Functional Ecology
ISSN :
0269-8463
eISSN :
1365-2435
Publisher :
Wiley, Oxford, United Kingdom
Volume :
35
Issue :
2
Pages :
546-560
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture ULg FSR - Université de Liège. Fonds spéciaux pour la recherche
Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32–46. https://doi.org/10.1111/j.1442-9993.2001.tb00081.x
Anderson, M. J., Gorley, R. N., & Clarke, K. R. (2008). PERMANOVA+ for PRIMER: A guide to software and statistical methods. PRIMER-E.
Anderson, M. J., & Walsh, D. C. I. (2013). PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs, 83(4), 557–574. https://doi.org/10.1890/12-2010.1
Arntzen, A. J. W., Smithson, A., & Oldham, R. S. (1999). Marking and tissue sampling effects on body condition and survival in the newt Triturus cristatus. Journal of Herpetology, 33(4), 567–576. https://doi.org/10.2307/1565573
Bolnick, D. I. (2001). Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature, 410(6827), 463–466. https://doi.org/10.1038/35068555
Bonett, R. M., & Blair, A. L. (2017). Evidence for complex life cycle constraints on salamander body form diversification. Proceedings of the National Academy of Sciences of the United States of America, 114, 9936–9941. https://doi.org/10.1073/pnas.1703877114
Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni Del R Istituto Superiore Di Scienze Economiche e Commerciali Di Firenze. https://doi.org/10.4135/9781412961288.n455
Chacornac, J. M., & Joly, P. (1985). Activité prédatrice du triton alpestre (Triturus alpestris) dans un lac alpin (2125 m, Alpes françaises). Acta Oecologica, 6, 93–103.
Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1988), 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User manual/tutorial. PRIMER-E.
Cloyed, C. S., Newsome, S. D., & Eason, P. K. (2015). Trophic discrimination factors and incorporation rates of carbon- and nitrogen-stable isotopes in adult green frogs, Lithobates clamitans. Physiological and Biochemical Zoology, 88(5), 576–585. https://doi.org/10.1086/682576
Cohen, J. E., Pimm, S. L., Yodzis, P., & Saldaña, J. (1993). Body sizes of animal predators and animal prey in food webs. Journal of Animal Ecology, 62(1), 67–78. https://doi.org/10.2307/5483
Costa, A., Salvidio, S., Posillico, M., Altea, T., Matteucci, G., & Romano, A. (2014). What goes in does not come out: Different non-lethal dietary methods give contradictory interpretation of prey selectivity in amphibians. Amphibia-Reptilia, 35(2), 255–262. https://doi.org/10.1163/15685381-00002944
Denoël, M. (2004). Feeding performance in heterochronic alpine newts is consistent with trophic niche and maintenance of polymorphism. Ethology, 110(2), 127–136. https://doi.org/10.1111/j.1439-0310.2003.00958.x
Denoël, M. (2005a). Habitat partitioning in facultatively paedomorphic populations of palmate newts Triturus helveticus. Ambio, 34(6), 476–477. https://doi.org/10.1579/0044-7447-34.6.476
Denoël, M. (2005b). Persistance et dispersion d’une population introduite de triton alpestre (Triturus alpestris) dans les causses du Larzac (sud de la France). Revue d’Ecologie (La Terre et La Vie), 60(2), 139–148.
Denoël, M. (2007). Priority areas of intraspecific diversity: Larzac, a global hotspot for facultative paedomorphosis in amphibians. Animal Conservation, 10(1), 110–116. https://doi.org/10.1111/j.1469-1795.2006.00081.x
Denoël, M. (2017). On the identification of paedomorphic and overwintering larval newts based on cloacal shape: Review and guidelines. Current Zoology, 63(2), 165–173. https://doi.org/10.1093/cz/zow054
Denoël, M., & Andreone, F. (2003). Trophic habits and aquatic microhabitat use in gilled immature, paedomorphic and metamorphic alpine newts (Triturus alpestris apuanus) in a pond in central Italy. Belgian Journal of Zoology, 133(2), 95–102.
Denoël, M., Drapeau, L., Oromi, N., & Winandy, L. (2019). The role of predation risk in metamorphosis versus behavioural avoidance: A sex-specific study in a facultative paedomorphic amphibian. Oecologia, 189, 637–645. https://doi.org/10.1007/s00442-019-04362-8
Denoël, M., Drapeau, L., & Winandy, L. (2019). Reproductive fitness consequences of progenesis: Sex-specific payoffs in safe and risky environments. Journal of Evolutionary Biology, 32(6), 629–637. https://doi.org/10.1111/jeb.13449
Denoël, M., & Ficetola, G. F. (2014). Heterochrony in a complex world: Disentangling environmental processes of facultative paedomorphosis in an amphibian. Journal of Animal Ecology, 83(3), 606–615. https://doi.org/10.1111/1365-2656.12173
Denoël, M., & Ficetola, G. F. (2015). Using kernels and ecological niche modeling to delineate conservation areas in an endangered patch-breeding phenotype. Ecological Applications, 25(7), 1922–1931. https://doi.org/10.1890/14-1041.1
Denoël, M., Hervant, F., Schabetsberger, R., & Joly, P. (2002). Short- and long-term advantages of an alternative ontogenetic pathway. Biological Journal of the Linnean Society, 77(1), 105–112. https://doi.org/10.1046/j.1095-8312.2002.00095.x
Denoël, M., Ivanović, A., Džukić, G., & Kalezić, M. L. (2009). Sexual size dimorphism in the evolutionary context of facultative paedomorphosis: Insights from European newts. BMC Evolutionary Biology, 9(1), 278. https://doi.org/10.1186/1471-2148-9-278
Denoël, M., & Joly, P. (2000). Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia: Caudata). Proceedings of the Royal Society B: Biological Sciences, 267(1451), 1481–1485. https://doi.org/10.1098/rspb.2000.1168
Denoël, M., & Joly, P. (2001). Adaptive significance of facultative paedomorphosis in Triturus alpestris (Amphibia, Caudata): Resource partitioning in an alpine lake. Freshwater Biology, 46(10), 1387–1396. https://doi.org/10.1046/j.1365-2427.2001.00762.x
Denoël, M., Joly, P., & Whiteman, H. H. (2005). Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biological Reviews of the Cambridge Philosophical Society, 80(4), 663–671. https://doi.org/10.1017/S1464793105006858
Denoël, M., Schabetsberger, R., & Joly, P. (2004). Trophic specialisations in alternative heterochronic morphs. Die Naturwissenschaften, 91(2), 81–84. https://doi.org/10.1007/s00114-003-0492-6
Denoël, M., Whiteman, H. H., & Wissinger, S. A. (2007). Foraging tactics in alternative heterochronic salamander morphs: Trophic quality of ponds matters more than water permanency. Freshwater Biology, 52(9), 1667–1676. https://doi.org/10.1111/j.1365-2427.2007.01793.x
Denoël, M., & Winandy, L. (2015). The importance of phenotypic diversity in conservation: Resilience of palmate newt morphotypes after fish removal in Larzac ponds (France). Biological Conservation, 192, 402–408. https://doi.org/10.1016/j.biocon.2015.10.018
Erwin, D. H. (2015). Novelty and innovation in the history of life. Current Biology, 25(19), R930–R940. https://doi.org/10.1016/j.cub.2015.08.019
Fabre, A., Bardua, C., Bon, M., Clavel, J., Felice, R. N., Streicher, J. W., Bonnel, J., Stanley, E. L., Blackburn, D. C., & Goswami, A. (2020). Metamorphosis shapes cranial diversity and rate of evolution in salamanders. Nature Ecology & Evolution, 4, 1129–1140. https://doi.org/10.1038/s41559-020-1225-3
Fages, A. (2004). La quête de l'eau. Du Néolithique… à nos jours. Los Adralhans.
Francis, T. B., & Schindler, D. E. (2009). Shoreline urbanization reduces terrestrial insect subsidies to fishes in North American lakes. Oikos, 118(12), 1872–1882. https://doi.org/10.1111/j.1600-0706.2009.17723.x
Frédérich, B., Lehanse, O., Vandewalle, P., & Lepoint, G. (2010). Trophic niche width, shift, and specialization of Dascyllus aruanus in Toliara lagoon, Madagascar. Copeia, 2010(2), 218–226. https://doi.org/10.1643/CE-09-031
Frédérich, B., Santini, F., Konow, N., Schnitzler, J., Lecchini, D., & Alfaro, M. E. (2017). Body shape convergence driven by small size optimum in marine angelfishes. Biology Letters, 13(6), 20170154. https://doi.org/10.1098/rsbl.2017.0154
Fry, B., & Davis, J. (2015). Rescaling stable isotope data for standardized evaluations of food webs and species niches. Marine Ecology Progress Series, 528, 7–17. https://doi.org/10.3354/meps11293
Gabrion, J. (1976). La néoténie chez Triturus helveticus Raz. Etude morphofonctionnelle de la fonction thyroidienne (PhD thesis). Université des Sciences et Techniques du Languedoc, Montpellier.
Gabrion, J., Sentein, P., & Gabrion, C. (1977). Les populations néoténiques de Triturus helveticus des Causses et du Bas-Languedoc I. Répartition et caractéristiques. La Terre et La Vie, 31, 489–506.
Gao, K., & Shubin, N. H. (2001). Late Jurassic salamanders from northern China. Nature, 410, 574–577. https://doi.org/10.1038/35069051
Gould, S. (1977). Ontogeny and phylogeny. Belknap Press of Harvard University Press.
Hanken, J., & Wake, D. B. (1993). Miniaturization of body size: Organismal consequences and evolutionary significance. Annual Review of Ecology and Systematics, 24(1), 501–519. https://doi.org/10.1146/annurev.es.24.110193.002441
Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x
Jakob, E. M., Marshal, S. D., & Uetz, G. W. (1996). Estimating fitness: A comparison of body condition indices. Oikos, 77(1), 61–67. https://doi.org/10.2307/3545585
Joly, P. (1987). Le régime alimentaire des amphibiens méthodes d'étude. Alytes, 6(1), 11–17.
Kalezić, M. L., Cvetković, D., Djorović, A., & Džukić, G. (1996). Alternative life-history pathways: Paedomorphosis and adult fitness in European newts (Triturus vulgaris and T. alpestris). Journal of Zoological Systematics and Evolutionary Research, 34(1), 1–7. https://doi.org/10.1111/j.1439-0469.1996.tb00804.x
Kon, T., & Yoshino, T. (2002). Extremely early maturity found in Okinawan gobioid fishes. Ichthyological Research, 49(3), 224–228. https://doi.org/10.1007/s102280200031
Korn, D. (1995). Impact of environmental perturbations on heterochronic developments in Paleozoic ammonoids. In K. J. McNamara (Ed.), Evolutionary change and heterochrony (pp. 245–260). John Wiley & Sons Ltd.
Lackey, A., Moore, M. P., Doyle, J., Gerlanc, N., Hagan, A., Geile, M., Eden, C., & Whiteman, H. H. (2019). Lifetime fitness, sex-specific life history, and the maintenance of a polyphenism. The American Naturalist, 194(2), 230–245. https://doi.org/10.1086/704156
Lauder, G. V., & Reilly, S. M. (1994). Amphibian feeding behavior: Comparative biomechanics and evolution. In V. Bels, M. Chardon, & P. Vanderwalle (Eds.), Advances in comparative and environmental physiology (Vol. 18, pp. 163–195). Springer. https://doi.org/10.1007/978-3-642-57906-6_7
Lauder, G. V., & Shaffer, B. H. (1993). Design of feeding systems in aquatic vertebrates: Major patterns and their evolutionary interpretations. In J. Hanken & B. K. Hall (Eds.), The Skull, Vol. 3: Functional and evolutionary mechanisms (pp. 113–149). Chicago University Press.
Laudet, V. (2011). The origins and evolution of vertebrate metamorphosis. Current Biology, 21(18), R726–R737. https://doi.org/10.1016/j.cub.2011.07.030
Lefebvre, F., & Poulin, R. (2005). Progenesis in digenean trematodes: A taxonomic and synthetic overview of species reproducing in their second intermediate hosts. Parasitology, 130(6), 587–605. https://doi.org/10.1017/S0031182004007103
Lejeune, B., Sturaro, N., Lepoint, G., & Denoël, M. (2018). Facultative paedomorphosis as a mechanism promoting intraspecific niche differentiation. Oikos, 127(3), 427–439. https://doi.org/10.1111/oik.04714
Levis, N. A., de la Serna Buzón, S., & Pfennig, D. W. (2015). An inducible offense: Carnivore morph tadpoles induced by tadpole carnivory. Ecology and Evolution, 5(7), 1405–1411. https://doi.org/10.1002/ece3.1448
Long, J. A. (1990). Heterochrony and the origin of tetrapods. Lethaia, 23(2), 157–166. https://doi.org/10.1111/j.1502-3931.1990.tb01357.x
Mathiron, A. G. E., Lena, J. P., Baouch, S., & Denoël, M. (2017). The ‘male escape hypothesis’: Sex-biased metamorphosis in response to climatic drivers in a facultatively paedomorphic amphibian. Proceedings of the Royal Society B: Biological Sciences, 284(1853), 20170176. https://doi.org/10.1098/rspb.2017.0176
McKinney, M. L., & McNamara, K. J. (1991). Heterochrony: The evolution of ontogeny. Plenum Press. https://doi.org/10.1007/978-1-4757-0773-1
McNamara, K. J. (1997). Shapes of time: The evolution of growth and development. Johns Hopkins University Press.
McNamara, K. J. (2012). Heterochrony: The evolution of development. Evolution: Education and Outreach, 5(2), 203–218. https://doi.org/10.1007/s12052-012-0420-3
Moczek, A. P., Sultan, S., Foster, S., Ledon-Rettig, C., Dworkin, I., Nijhout, H. F., Abouheif, E., & Pfennig, D. W. (2011). The role of developmental plasticity in evolutionary innovation. Proceedings of the Royal Society B: Biological Sciences, 278(1719), 2705–2713. https://doi.org/10.1098/rspb.2011.0971
Newsome, S. D., Martinez del Rio, C., Bearhop, S., & Phillips, D. L. (2007). A niche for isotope ecology. Frontiers in Ecology and the Environment, 5(8), 429–436. https://doi.org/10.1890/060150.1
Nosil, P., & Reimchen, T. E. (2005). Ecological opportunity and levels of morphological variance within freshwater stickleback populations. Biological Journal of the Linnean Society, 86(3), 297–308. https://doi.org/10.1111/j.1095-8312.2005.00517.x
Oromi, N., Michaux, J., & Denoël, M. (2016). High gene flow between alternative morphs and the evolutionary persistence of facultative paedomorphosis. Scientific Reports, 6, 32046. https://doi.org/10.1038/srep32046
Pfennig, D. W. (1992). Proximate and functional causes of polyphenism in an anuran tadpole. Functional Ecology, 6(2), 167–174. https://doi.org/10.2307/2389751
Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D.,R Core Team. (2018). nlme: Linear and nonlinear mixed effects models. R package version 3.1-137. https://CRAN.R-project.org/package=nlme
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Recknagel, H., Hooker, O. E., Adams, C. E., & Elmer, K. R. (2017). Ecosystem size predicts eco-morphological variability in a postglacial diversification. Ecology and Evolution, 7(15), 5560–5570. https://doi.org/10.1002/ece3.3013
Ryan, T. J., & Semlitsch, R. D. (1998). Intraspecific heterochrony and life history evolution: Decoupling somatic and sexual development in facultatively paedomorphic salamander. Proceedings of the National Academy of Sciences of the United States of America, 95, 5643–5648. https://doi.org/10.1073/pnas.95.10.5643
Schabetsberger, R. (1994). Gastric evacuation rates of adult and larval alpine newts (Triturus alpestris) under laboratory and field conditions. Freshwater Biology, 31(2), 143–151. https://doi.org/10.1111/j.1365-2427.1994.tb00848.x
Schmidt, P. S., Bertness, M. D., & Rand, D. M. (2000). Environmental heterogeneity and balancing selection in the acorn barnacle Semibalanus balanoides. Proceedings of the Royal Society B: Biological Sciences, 267(1441), 379–384. https://doi.org/10.1098/rspb.2000.1012
Semlitsch, R. D. (1987). Paedomorphosis in Ambystoma talpoideum: Effects of density, food, and pond drying. Ecology, 68(4), 994–1002. https://doi.org/10.2307/1938370
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423. https://doi.org/10.1145/584091.584093
Simpson, G. G. (1944). Tempo and mode in evolution. Columbia University Press.
Skulason, S., & Smith, T. B. (1995). Resource polymorphisms in vertebrates. Trends in Ecology & Evolution, 10(9), 366–370. https://doi.org/10.1016/S0169-5347(00)89135-1
Smith, T. B., & Skúlason, S. (1996). Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annual Review of Ecology and Systematics, 27(1), 111–133. https://doi.org/10.1146/annurev.ecolsys.27.1.111
Snyder, J., & Bretsky, P. W. (1971). Life habits of diminutive bivalve molluscs in the Maquoteka formation (Upper Ordovician). American Journal of Science, 271(3), 227–251. https://doi.org/10.2475/ajs.271.3.227
Stock, B. C., & Semmens, B. X. (2016). MixSIAR GUI user manual, version 1.0.
Struck, T. H., Golombek, A., Weigert, A., Franke, F. A., Westheide, W., Purschke, G., Bleidorn, C., & Halanych, K. M. (2015). The evolution of annelids reveals two adaptive routes to the interstitial realm. Current Biology, 25(15), 1993–1999. https://doi.org/10.1016/j.cub.2015.06.007
Vignoli, L., Luiselli, L., & Bologna, M. A. (2009). Dietary patterns and overlap in an amphibian assemblage at a pond in mediterranean central Italy. Vie et Milieu-Life and Environment, 59(1), 47–57.
Wellborn, G. A., & Langerhans, R. B. (2015). Ecological opportunity and the adaptive diversification of lineages. Ecology and Evolution, 5(1), 176–195. https://doi.org/10.1002/ece3.1347
Werner, E. E., & Gilliam, J. F. (1984). The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics, 15, 393–425.
West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 20, 249–278. https://doi.org/10.1146/annurev.es.20.110189.001341
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.
Westheide, W. (1987). Progenesis as a principle in meiofauna evolution. Journal of Natural History, 21(4), 843–854. https://doi.org/10.1080/00222938700770501
Whiteman, H. H. (1994). Evolution of facultative paedomorphosis in Salamanders. The Quarterly Review of Biology, 69(2), 205–221. https://doi.org/10.1086/418540
Whiteman, H. H. (1997). Maintenance of polymorphism promoted by sex-specific fitness payoffs. Evolution, 51(6), 2039–2044. https://doi.org/10.2307/2411026
Whiteman, H. H., Wissinger, S. A., & Brown, W. S. (1996). Growth and foraging consequences of facultative paedomorphosis in the tiger salamander Ambystoma tigrinum nebulosum. Evolutionary Ecology, 10(4), 433–446. https://doi.org/10.1007/BF01237728
Whiteman, H. H., Wissinger, S. A., Denoël, M., Mecklin, C. J., Gerlanc, N. M., & Gutrich, J. J. (2012). Larval growth in polyphenic salamanders: Making the best of a bad lot. Oecologia, 168(1), 109–118. https://doi.org/10.1007/s00442-011-2076-z
Wilbur, H. M., & Collins, J. P. (1973). Ecological aspects of amphibian metamorphosis. Science, 182(4119), 1305–1314. https://doi.org/10.1126/science.182.4119.1305
Wilson, D. S. (1975). The adequacy of body size as a niche difference. The American Naturalist, 109(970), 769–784. https://doi.org/10.1086/283042
Wimberger, P. H. (1994). Trophic polymorphisms, plasticity, and speciation in vertebrates. In D. J. Stouder, K. Fresh, & R. J. Feller (Eds.), Theory and application in fish feeding ecology (pp. 19–43). University of South Carolina Press.
Winandy, L., Colin, M., & Denoël, M. (2016). Temporal habitat shift of a polymorphic newt species under predation risk. Behavioral Ecology, 27(4), 1025–1032. https://doi.org/10.1093/beheco/arw008
Woodward, G., & Hildrew, A. G. (2002). Body-size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology, 71(6), 1063–1074. https://doi.org/10.1046/j.1365-2656.2002.00669.x