Francis, Frédéric ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Druart, F.; Functional and Evolutionary Entomology, TERRA Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux, 5030, Belgium, Microbial Processes and Interactions (MiPI), TERRA Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux, 5030, Belgium
Di Mavungu, J. D.; Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
De Boevre, M.; Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
De Saeger, S.; Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
Delvigne, Frank ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
Language :
English
Title :
Biofilm mode of cultivation leads to an improvement of the entomotoxic patterns of two aspergillus species
Scholte, E.-J.; Knols, B.G.J.; Samson, R.A.; Takken, W. Entomopathogenic fungi for mosquito control: A review. J. Insect Sci. 2004, 4, 1–24. [CrossRef]
Bawin, T.; Seye, F.; Boukraa, S.; Zimmer, J.-Y.; Delvigne, F.; Francis, F. La lutte contre les moustiques (Diptera: Culicidae): Diversité des approches et application du contrôle biologique. Can. Entomol. 2014, 147, 476–500. [CrossRef]
Bawin, T.; Seye, F.; Boukraa, S.; Zimmer, J.-Y.; Raharimalala, F.N.; Zune, Q.; Ndiaye, M.; Delvigne, F.; Francis, F. Production of two entomopathogenic Aspergillus species and insecticidal activity against the mosquito Culex quinquefasciatus compared to Metarhizium anisopliae. Biocontrol Sci. Technol. 2016, 26, 617–629. [CrossRef]
Seye, F.; Bawin, T.; Boukraa, S.; Zimmer, J.-Y.; Ndiaye, M.; Delvigne, F.; Francis, F. Pathogenicity of Aspergillus clavatus produced in a fungal biofilm bioreactor toward Culex quinquefasciatus (Diptera: Culicidae). J. Pestic. Sci. 2014, 39, 127–132. [CrossRef]
WHO-IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Report No.: 82; WHO-IARC: Leone, France, 2002.
Woloshuk, C.P.; Shim, W.B. Aflatoxins, fumonisins, and trichothecenes: A convergence of knowledge. FEMS Microbiol. Rev. 2013, 37, 94–109. [CrossRef] [PubMed]
Abbas, H.K.; Zablotowicz, R.M.; Horn, B.W.; Phillips, N.A.; Johnson, B.J.; Jin, X. Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 198–208. [CrossRef] [PubMed]
Bandyopadhyay, R.; Ortega-Beltran, A.; Akande, A.; Mutegi, C.; Atehnkeng, J.; Kaptoge, L.; Senghor, A.; Adhikari, B.; Cotty, P. Biological control of aflatoxins in Africa: Current status and potential challenges in the face of climate change. World Mycotoxin J. 2016, 9, 771–789. [CrossRef]
Kagot, V.; Okoth, S.; De Boevre, M.; De Saeger, S. Biocontrol of Aspergillus and Fusarium Mycotoxins in Africa: Benefits and Limitations. Toxins 2019, 11, 109. [CrossRef] [PubMed]
Medina, M.L.; Haynes, P.A.; Breci, L.; Francisco, W.A. Analysis of secreted proteins from Aspergillus flavus. Proteomics 2005, 5, 3153–3161. [CrossRef]
Kang, D.; Son, G.H.; Park, H.M.; Kim, J.; Choi, J.N.; Kim, H.Y.; Lee, S.; Hong, S.-B.; Lee, C.H. Culture condition-dependent metabolite profiling of Aspergillus fumigatus with antifungal activity. Fungal Boil. 2013, 117, 211–219. [CrossRef]
Calvo, A.M.; Cary, J.W. Association of fungal secondary metabolism and sclerotial biology. Front. Microbiol. 2015, 6, 1–16. [CrossRef] [PubMed]
Barrios-González, J. Solid-state fermentation: Physiology of solid medium, its molecular basis and applications. Process Biochem. 2012, 47, 175–185. [CrossRef]
Zacchetti, B.; Wösten, H.A.; Claessen, D. Multiscale heterogeneity in filamentous microbes. Biotechnol. Adv. 2018, 36, 2138–2149. [CrossRef] [PubMed]
Khalesi, M.; Zune, Q.; Telek, S.; Riveros-Galan, D.; Verachtert, H.; Toye, D.; Gebruers, K.; Derdelinckx, G.; Delvigne, F. Fungal biofilm reactor improves the productivity of hydrophobin HFBII. Biochem. Eng. J. 2014, 88, 171–178. [CrossRef]
Zune, Q.; Delepierre, A.; Gofflot, S.; Bauwens, J.; Twizere, J.-C.; Punt, P.J.; Francis, F.; Toye, D.; Bawin, T.; Delvigne, F. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla: GFP fusion protein produced by Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2015, 99, 6241–6254. [CrossRef] [PubMed]
Tremblay, Y.D.N.; Hathroubi, S.; Jacques, M. Bacterial biofilms: Their importance in animal health and public health]. Can. J. Vet. Res. 2014, 78, 110–116.
Biesebeke, R.T.; Ruijter, G.; Rahardjo, Y.S.; Hoogschagen, M.; Heerikhuisen, M.; Levin, A.; A Van Driel, K.G.; Schutyser, M.; Dijksterhuis, J.; Zhu, Y. et al. Aspergillus oryzae in solid-state and submerged fermentations. Progress report on a multi-disciplinary project. FEMS Yeast Res. 2002, 2, 245–248. [CrossRef]
Van Hartingsveldt, W.; Mattern, I.E.; Van Zeijl, C.M.J.; Pouwels, P.H.; Hondel, C.A.M.J.J.V.D. Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol. Genet. Genom. 1987, 206, 71–75. [CrossRef]
Kakahi, F.B.; Ly, S.; Tarayre, C.; Deschaume, O.; Bartic, C.; Wagner, P.; Compère, P.; Derdelinckx, G.; Blecker, C.; Delvigne, F. Modulation of fungal biofilm physiology and secondary product formation based on physico-chemical surface properties. Bioprocess Biosyst. Eng. 2019, 42, 1935–1946. [CrossRef]
Ly, S.; Kakahi, F.B.; Mith, H.; Phat, C.; Fifani, B.; Kenne, T.; Fauconnier, M.-L.; Delvigne, F. Engineering Synthetic Microbial Communities through a Selective Biofilm Cultivation Device for the Production of Fermented Beverages. Microorganisms 2019, 7, 206. [CrossRef]
OMS. Guidelines for Laboratory and Field Testing of Mosquito Larvicides; World Health Organization: Geneva, Switzerland, 2015; pp. 1–41.
Dagnelie, P. Théorie et Méthodes Statistiques: Applications Agronomiques (Vol. 2); Presses Agronomiques: Gembloux, Belgium, 1994; 451p.
De Moraes, A.M.L.; Da Costa, G.L.; Barcellos, M.Z.D.C.; De Oliveira, R.L.; De Oliveira, P.C. The entomopathogenic potential of Aspergillus spp. in mosquitoes vectors of tropical diseases. J. Basic Microbiol. 2001, 41, 45–49. [CrossRef]
Zhang, P.; You, Y.; Song, Y.; Wang, Y.; Zhang, L. First record of Aspergillus oryzae (Eurotiales: Trichocomaceae) as an entomopathogenic fungus of the locust, Locusta migratoria (Orthoptera: Acrididae). Biocontrol Sci. Technol. 2015, 25, 1–20. [CrossRef]
Vijayan, V.; Balaraman, K. Metabolites of fungi & actinomycetes active against mosquito larvae. Indian J. Med. Res. 1991, 93, 115–117. [PubMed]
Oda, K.; Kakizono, D.; Yamada, O.; Iefuji, H.; Akita, O.; Iwashita, K. Proteomic Analysis of Extracellular Proteins from Aspergillus oryzae Grown under Submerged and Solid-State Culture Conditions Proteomic Analysis of Extracellular Proteins from Aspergillus oryzae Grown under Submerged and Solid-State Culture Conditi. Appl. Environ. Microbiol. 2006, 72, e3448. [CrossRef]
Hata, Y.; Ishida, H.; Ichikawa, E.; Kawato, A.; Suginami, K.; Imayasu, S. Nucleotide sequence of an alternative glucoamylase-encoding gene (glaB) expressed in solid-state culture of Aspergillus oryzae. Gene 1998, 207, 127–134. [CrossRef]
Meurer, F.; Do, H.T.; Sadowski, G.; Held, C. Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis. Biophys. Chem. 2017, 223, 30–38. [CrossRef] [PubMed]
Ortiz-Urquiza, A.; Riveiro-Miranda, L.; Santiago-Alvarez, C.; Quesada-Moraga, E. Insect-toxic secreted proteins and virulence of the entomopathogenic fungus Beauveria bassiana. J. Invertebr. Pathol. 2010, 105, 270–278. [CrossRef]
Stalinski, R.; Laporte, F.; Després, L.; Tetreau, G. Alkaline phosphatases are involved in the response ofAedes aegyptilarvae to intoxication withBacillus thuringiensissubsp.israelensis Cry toxins. Environ. Microbiol. 2016, 18, 1022–1036. [CrossRef]
Berthold, C.L.; Toyota, C.G.; Richards, N.G.J.; Lindqvist, Y. Reinvestigation of the Catalytic Mechanism of Formyl-CoA Transferase, a Class III CoA-transferase. J. Boil. Chem. 2007, 283, 6519–6529. [CrossRef]
Mullins, E.; Starks, C.M.; Francois, J.A.; Sael, L.; Kihara, D.; Kappock, T.J. Formyl-coenzyme A (CoA): Oxalate CoA-transferase from the acidophile Acetobacter aceti has a distinctive electrostatic surface and inherent acid stability. Protein Sci. 2012, 21, 686–696. [CrossRef]
Andrade, P.; Caldas, E. Aflatoxins in cereals: Worldwide occurrence and dietary risk assessment. World Mycotoxin J. 2015, 8, 415–431. [CrossRef]
Blaney, B.J.; Green, P. Insecticidal Fungal Metabolites: Cyclopiazonic Acid and Kojic Acid Contribute to the Toxicity of “Aspergillus flavus” to Sheep Blowfly “Lucilia Cuprina.”; General and Applied Entomology: Sydney, Australia, 1989. Available online: http://search.informit.com.au/documentSummary;dn=236829195107453;res=IELHSS (accessed on 3 February 2020).
Geiser, D.M.; Dorner, J.W.; Horn, B.W.; Taylor, J.W. The Phylogenetics of Mycotoxin and Sclerotium Production in Aspergillus flavus and Aspergillus oryzae. Fungal Genet. Boil. 2000, 31, 169–179. [CrossRef] [PubMed]
Frisvad, J.C.; Skouboe, P.; Samson, R.A. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Syst. Appl. Microbiol. 2005, 28, 442–453. [CrossRef] [PubMed]
Lebar, M.; Cary, J.W.; Majumdar, R.; Carter-Wientjes, C.H.; Mack, B.M.; Wei, Q.; Uka, V.; De Saeger, S.; Di Mavungu, J.D. Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus. Fungal Genet. Boil. 2018, 116, 14–23. [CrossRef] [PubMed]
Nishie, K.; Cole, R.; Dorner, J. Toxicity and neuropharmacology of cyclopiazonic acid. Food Chem. Toxicol. 1985, 23, 831–839. [CrossRef]
Fremy, J.-M. Évaluation des risques liés à la présence de mycotoxines dans les chaînes alimentaires humaine et animale Rapport final. Afssa 2009, 200–224.
Tokuoka, M.; Kikuchi, T.; Shinohara, Y.; Koyama, A.; Iio, S.-I.; Kubota, T.; Kobayashi, J.; Koyama, Y.; Totsuka, A.; Shindo, H.; et al. Cyclopiazonic acid biosynthesis gene cluster gene cpaM is required for speradine A biosynthesis. Biosci. Biotechnol. Biochem. 2015, 79, 2081–2085. [CrossRef]
Nishimura, A.; Yoshizako, F.; Chubachi, M. Purification and Characterization of an Enzyme That Catalyzes Ring Cleavage of Aspergillic Acid, from Tvichoderma koningii ATCC 76666. Biosci. Biotechnol. Biochem. 1997, 61, 1527–1530. [CrossRef]
Macdonald, J.C. Biosynthesis of hydroxyaspergillic acid. J. Boil. Chem. 1962, 237, 1977–1981.
Micetich, R.G.; Macdonald, J.C. Biosynthesis of Neoaspergillic and Neohydroxyaspergillic acids. J. Boil. Chem. 1965, 240, 1–5.
Zhu, F.; Wu, J.; Chen, G.; Lu, W.; Pan, J. Biosynthesis, characterization and biological evalutation of Fe(III) and Cu(II) complexes of neoaspergillic acid, a hydroxamate siderophore produced by co-cultures of two marine-derived mangrove epiphytic fungi. Nat. Prod. Commun. 2011, 6, 1137–1140. [CrossRef] [PubMed]
Arroyo-Manzanares, N.; Di Mavungu, J.D.; Uka, V.; Malysheva, S.V.; Cary, J.W.; Ehrlich, K.C.; Vanhaecke, L.; Bhatnagar, D.; De Saeger, S. Use of UHPLC high-resolution Orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites in Aspergillus flavus. Food Addit. Contam. Part A 2015, 32, 1–18. [CrossRef] [PubMed]