Goelen, T.; Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
Sobhy, I. S.; Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium, Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
Vanderaa, C.; Laboratory of Socio-Ecology & Social Evolution, Biology Department, KU Leuven, Leuven, Belgium
de Boer, J. G.; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
Delvigne, Frank ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
Francis, Frédéric ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Wäckers, F.; Biobest, Westerlo, Belgium, Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
Rediers, H.; Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
Verstrepen, K. J.; Lab for Systems Biology, VIB Center for Microbiology & Centre of Microbial and Plant Genetics (CMPG) Lab for Genetics and Genomics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
Wenseleers, T.; Laboratory of Socio-Ecology & Social Evolution, Biology Department, KU Leuven, Leuven, Belgium
Jacquemyn, H.; Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
Lievens, B.; Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
Language :
English
Title :
Volatiles of bacteria associated with parasitoid habitats elicit distinct olfactory responses in an aphid parasitoid and its hyperparasitoid
Aartsma, Y., Bianchi, F. J. J. A., van der Werf, W., Poelman, E. H., & Dicke, M. (2017). Herbivore-induced plant volatiles and tritrophic interactions across spatial scales. New Phytologist, 216, 1054–1063. https://doi.org/10.1111/nph.14475
Aartsma, Y., Cusumano, A., de Bobadilla, M. F., Rusman, Q., Vosteen, I., & Poelman, E. H. (2019). Understanding insect foraging in complex habitats by comparing trophic levels: Insights from specialist host-parasitoid-hyperparasitoid systems. Current Opinion in Insect Science, 32, 54–60. https://doi.org/10.1016/j.cois.2018.11.001
Azeem, M., Rajarao, G. K., Nordenhem, H., Nordlander, G., & Borg-Karlson, A. K. (2013). Penicillium expansum volatiles reduce pine weevil attraction to host plants. Journal of Chemical Ecology, 39, 120–128. https://doi.org/10.1007/s10886-012-0232-5
Becher, P. G., Flick, G., Rozpędowska, E., Schmidt, A., Hagman, A., Lebreton, S., … Bengtsson, M. (2012). Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Functional Ecology, 26, 822–828. https://doi.org/10.1111/j.1365-2435.2012.02006.x
Becher, P. G., Hagman, A., Verschut, V., Chakraborty, A., Rozpędowska, E., Lebreton, S., … Piškur, J. (2018). Chemical signaling and insect attraction is a conserved trait in yeasts. Ecology and Evolution, 8, 2962–2974. https://doi.org/10.1002/ece3.3905
Boone, C. K., Six, D. L., Zheng, Y., & Raffa, K. F. (2008). Parasitoids and dipteran predators exploit volatiles from microbial symbionts to locate bark beetles. Environmental Entomology, 37, 150–161. https://doi.org/10.1093/ee/37.1.150
Borg-Karlson, A., Tengö, J., Valterová, I., Unelius, R., Taghizadeh, T., Tolasch, T., & Francke, W. (2003). (S)-(+)-Linalool, a mate attractant pheromone component in the bee Colletes cunicularius. Journal of Chemical Ecology, 29, 1–14. https://doi.org/10.1023/A:1021964210877
Bruce, T. J. A., & Pickett, J. A. (2011). Perception of plant volatile blends by herbivorous insects – Finding the right mix. Phytochemistry, 72, 1605–1611. https://doi.org/10.1016/j.phytochem.2011.01.011
Bruce, T. J. A., Wadhams, L. J., & Woodcock, C. M. (2005). Insect host location: A volatile situation. Trends in Plant Science, 10, 269–274. https://doi.org/10.1016/j.tplants.2005.04.003
Bruce, T., Webster, B., Pickett, J., & Hardie, J. (2010). Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Animal Behaviour, 79, 451–457. https://doi.org/10.1016/j.anbehav.2009.11.028
Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., … Xia, J. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494. https://doi.org/10.1093/nar/gky310
Christiaens, J. F., Franco, L. M., Cools, T. L., De Meester, L., Michiels, J., Wenseleers, T., … Verstrepen, K. J. (2014). The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Reports, 9, 425–432. https://doi.org/10.1016/j.celrep.2014.09.009
Conchou, L., Lucas, P., Meslin, C., Proffit, M., Staudt, M., & Renou, M. (2019). Insect odorscapes: From plant volatiles to natural olfactory scenes. Frontiers in Physiology, 10, 972. https://doi.org/10.3389/fphys.2019.00972
Cusumano, A., Harvey, J. A., Dicke, M., & Poelman, E. H. (2019). Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity. Oecologia, 189, 699–709. https://doi.org/10.1007/s00442-019-04352-w
Dale, C., Beeton, M., Harbison, C., Jones, T., & Pontes, M. (2006). Isolation, pure culture, and characterization of “Candidatus Arsenophonus arthropodicus”, an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. Applied and Environmental Microbiology, 72, 2997–3004. https://doi.org/10.1128/AEM.72.4.2997-3004.2006
Davis, T. S., Crippen, T. L., Hofstetter, R. W., & Tomberlin, J. K. (2013). Microbial volatile emissions as insect semiochemicals. Journal of Chemical Ecology, 39, 840–859. https://doi.org/10.1007/s10886-013-0306-z
de Bruyne, M., & Baker, T. C. (2008). Odor detection in insects: Volatile codes. Journal of Chemical Ecology, 34, 882–897. https://doi.org/10.1007/s10886-008-9485-4
de Rijk, M., Dicke, M., & Poelman, E. H. (2013). Foraging behaviour by parasitoids in multiherbivore communities. Animal Behaviour, 85, 1517–1528. https://doi.org/10.1016/j.anbehav.2013.03.034
Dicke, M., & Baldwin, I. T. (2010). The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’. Trends in Plant Science, 15, 167–175. https://doi.org/10.1016/j.tplants.2009.12.002
Dillon, R. J., Vennard, C. T., & Charnley, A. K. (2000). Exploitation of gut bacteria in the locust. Nature, 403, 851. https://doi.org/10.1038/35002669
Dudareva, N., Klempien, A., Muhlemann, J. K., & Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198, 16–32. https://doi.org/10.1111/nph.12145
Dzialo, M. C., Park, R., Steensels, J., Lievens, B., & Verstrepen, K. J. (2017). Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiology Reviews, 41, S95–S128. https://doi.org/10.1093/femsre/fux031
Engel, P., & Moran, N. A. (2013). The gut microbiota of insects – Diversity in structure and function. FEMS Microbiology Reviews, 37, 699–735. https://doi.org/10.1111/1574-6976.12025
Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27–39. https://doi.org/10.1016/j.biocontrol.2016.11.007
Goelen, T., Sobhy, I. S., Vanderaa, C., de Boer, J. G., Delvigne, F., Francis, F., … Lievens, B. (2019). Data from: Volatiles of bacteria associated with parasitoid habitats elicit distinct olfactory responses in an aphid parasitoid and its hyperparasitoid. Dryad Digital Repository, https://doi.org/10.5061/dryad.fj6q573q9
Grigorescu, A. S., Renoz, F., Sabri, A., Foray, V., Hance, T., & Thonart, P. (2018). Accessing the hidden microbial diversity of aphids: An illustration of how culture-dependent methods can be used to decipher the insect microbiota. Microbial Ecology, 75, 1035–1048. https://doi.org/10.1007/s00248-017-1092-x
Hannula, S. E., Zhu, F., Heinen, R., & Bezemer, T. M. (2019). Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Communications, 10, 1254. https://doi.org/10.1038/s41467-019-09284-wID
Huang, J., Miller, J., Chen, S., Vulule, J., & Walker, E. (2006). Anopheles gambiae (Diptera: Culicidae) oviposition in response to agarose media and cultured bacterial volatiles. Journal of Medical Entomology, 43, 498–504. https://doi.org/10.1093/jmedent/43.3.498
Jones, J. C., Fruciano, C., Hildebrand, F., Al Toufalilia, H., Balfour, N. J., Bork, P., … Hughes, W. O. H. (2018). Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and Evolution, 8, 441–451. https://doi.org/10.1002/ece3.3597
Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., & Piechulla, B. (2009). Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology, 81, 1001–1012. https://doi.org/10.1007/s00253-008-1760-3
Koschier, E. H., De Kogel, W. J., & Visser, J. H. (2000). Assessing the attractiveness of volatile plant compounds to western flower thrips Frankliniella occidentalis. Journal of Chemical Ecology, 26, 2643–2655. https://doi.org/10.1023/A:1026470122171
Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems (Vol. 15). Philadelphia, PA: Siam.
Leroy, P. D., Sabri, A., Heuskin, S., Thonart, P., Lognay, G., Verheggen, F. J., … Haubruge, E. (2011). Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nature Communications, 2, 348. https://doi.org/10.1038/ncomms1347
Leroy, P. D., Sabri, A., Verheggen, F. J., Francis, F., Thonart, P., & Haubruge, E. (2011). The semiochemically mediated interactions between bacteria and insects. Chemoecology, 21, 113–122. https://doi.org/10.1007/s00049-011-0074-6
Lewis, W. J., Vet, L. E. M., Tumlinson, J. H., van Lenteren, J. C., & Papaj, D. R. (1990). Variations in parasitoid foraging behavior: Essential element of a sound biological control theory. Environmental Entomology, 19, 1183–1193. https://doi.org/10.1093/ee/19.5.1183
Löfstedt, C., Bergmann, J., Francke, W., Jirle, E., Hansson, B. S., & Ivanov, V. D. (2008). Identification of a sex pheromone produced by sternal glands in females of the caddisfly Molanna angustata Curtis. Journal of Chemical Ecology, 34, 220–228. https://doi.org/10.1007/s10886-007-9418-7
Luna, E., van Eck, L., Campillo, T., Weinroth, M., Metcalf, J., Perez-Quintero, A. L., … Leach, J. E. (2018). Bacteria associated with Russian wheat aphid (Diuraphis noxia) enhance aphid virulence to wheat. Phytobiomes, 2, 151–164. https://doi.org/10.1094/PBIOMES-06-18-0027-R
Martiny, A. C., Treseder, K., & Pusch, G. (2013). Phylogenetic conservatism of functional traits in microorganisms. The ISME Journal, 7, 830–838. https://doi.org/10.1038/ismej.2012.160
Martiny, J. B., Jones, S. E., Lennon, J. T., & Martiny, A. C. (2015). Microbiomes in light of traits: A phylogenetic perspective. Science, 350, aac9323. https://doi.org/10.1126/science.aac9323
Mazzetto, F., Gonella, E., Crotti, E., Vacchini, V., Syrpas, M., Pontini, M., … Alma, A. (2016). Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria. Journal of Pest Science, 89, 783–792. https://doi.org/10.1007/s10340-016-0754-7
McCormick, A. C., Unsicker, S. B., & Gershenzon, J. (2012). The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends in Plant Science, 17, 303–310. https://doi.org/10.1016/j.tplants.2012.03.012
Meiners, T. (2015). Chemical ecology and evolution of plant–insect interactions: A multitrophic perspective. Current Opinion in Insect Science, 8, 22–28. https://doi.org/10.1016/j.cois.2015.02.003
Mills, N. J., & Wajnberg, E. (2008). Optimal foraging behavior and efficient biological control methods. In E. Wajnberg, C. Bernstein, & J. Van Alphen (Eds.), Behavioural ecology of insect parasitoids: From theoretical approaches to field applications (pp. 1–30). Oxford, UK: Blackwell.
Mishra, M., Shamara, K., & Subramanian, S. (2018). Characterization of culturable gut bacterial isolates from wild population of melon fruit fly (Bactrocera cucurbitae) and assessing their attractancy potential for sustainable pest management. Phytoparasitica, 46, 583–594. https://doi.org/10.1007/s12600-018-0694-2
Mumm, R., & Hilker, M. (2005). The significance of background odour for an egg parasitoid to detect plants with host eggs. Chemical Senses, 30, 337–343. https://doi.org/10.1093/chemse/bji028
Piechulla, B., & Degenhardt, J. (2013). The emerging importance of microbial volatile organic compounds. Plant, Cell & Environment, 37, 811–812. https://doi.org/10.1111/pce.12254
Ping, L., & Boland, W. (2004). Signals from the underground: Bacterial volatiles promote growth in Arabidopsis. Trends in Plant Science, 9, 263–266. https://doi.org/10.1016/j.tplants.2004.04.008
Poelman, E. H., Bruinsma, M., Zhu, F., Weldegergis, B. T., Boursault, A. E., Jongema, Y., … Dicke, M. (2012). Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. Public Library of Science Biology, 10, e1001435. https://doi.org/10.1371/journal.pbio.1001435
Poonam, S., Paily, K. P., & Balaraman, K. (2002). Oviposition attractancy of bacterial culture filtrates response of Culex quinquefasciatus. Memórias do Instituto Oswaldo Cruz, 97, 359–362. https://doi.org/10.1590/S0074-02762002000300015
Pozo, M. I., Bartlewicz, J., van Oystaeyen, A., Benavente, A., van Kemenade, G., Wäckers, F., & Jacquemyn, H. (2018). Surviving in the absence of flowers: Do nectar yeasts rely on overwintering bumblebee queens to complete their annual life cycle? FEMS Microbial Ecology, 94, fiy196. https://doi.org/10.1093/femsec/fiy196
R Core Team. (2014). A language and environment for statistical computing. In R. S. Cowles, C. R. Saona, R. Holdcraft, & G. M. Loeb (Eds.). Vienna, Austria: Elsensohn Foundation for Statistical Computing.
Raffa, K. F. (2014). Terpenes tell different tales at different scales: Glimpses into the chemical ecology of conifer–bark beetle–microbial interactions. Journal of Chemical Ecology, 40, 1–20. https://doi.org/10.1007/s10886-013-0368-y
Reher, T., Van Kerckvoorde, V., Verheyden, L., Wenseleers, T., Beliën, T., Bylemans, D., & Martens, J. A. (2019). Evaluation of hop (Humulus lupulus) as a repellent for the management of Drosophila suzukii. Crop Protection, 124, 104839. https://doi.org/10.1016/j.cropro.2019.05.033
Rering, C. C., Beck, J. J., Hall, G. W., McCartney, M. M., & Vannette, R. L. (2018). Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytologist, 220, 655–658. https://doi.org/10.1111/nph.14809
Rochat, D., Morin, J., Kakul, T., Beaudoin-Ollivier, L., Prior, R., Renou, M., … Laup, S. (2002). Activity of male pheromone of Melanesian Rhinoceros beetle Scapanes australis. Journal of Chemical Ecology, 28, 479–500. https://doi.org/10.1023/A:1014531810037
Rockett, C. L. (1987). Bacteria as ovipositional attractants for Culex pipiens (Diptera:Culicidae). Great Lakes Entomology, 20, 151–155.
Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G., & Syed, Z. (2015). Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Scientific Reports, 5, 14059. https://doi.org/10.1038/srep14059
Schmidt, R., Cordovez, V., de Boer, W., Raaijmakers, J., & Garbeva, P. (2015). Volatile affairs in microbial interactions. The International Society of Microbial Ecology Journal, 9, 2329–2335. https://doi.org/10.1038/ismej.2015.42
Schröder, R., & Hilker, M. (2008). The relevance of background odor in resource location by insects: A behavioral approach. BioScience, 54, 308–316. https://doi.org/10.1641/B580406
Schulz, S., & Dickschat, J. S. (2007). Bacterial volatiles: The smell of small organisms. Natural Products Reports, 24, 814–842. https://doi.org/10.1039/b507392h
Sobhy, I. S., Baets, D., Goelen, T., Herrera-Malaver, B., Bosmans, L., Van den Ende, W., … Lievens, B. (2018). Sweet scents: Nectar specialist yeasts enhance nectar attraction of a generalist aphid parasitoid without affecting survival. Frontiers in Plant Science, 9, 1009. https://doi.org/10.3389/fpls.2018.01009
Sobhy, I. S., Goelen, T., Herrera-Malaver, B., Verstrepen, K. J., Wäckers, F., Jacquemyn, H., & Lievens, B. (2019). Associative learning and memory retention of nectar yeast volatiles in a generalist parasitoid. Animal Behaviour, 153, 137–146. https://doi.org/10.1016/j.anbehav.2019.05.006
Soler, R., Bezemer, T. M., & Harvey, J. A. (2013). Chemical ecology of insect parasitoids in a multitrophic above- and belowground context. In E. Wajnberg & S. Colazza (Eds.), Recent advances in chemical ecology of insect parasitoids (pp. 64–85). Hoboken, NJ: Wiley-Blackwell.
Stein, S. E. (1999). An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. Journal of the American Society for Mass Spectrometry, 10, 770–781. https://doi.org/10.1016/S1044-0305(99)00047-1
Stensmyr, M. C., Dweck, H. K. M., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., … Hansson, B. S. (2012). A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell, 151, 1345–1357. https://doi.org/10.1016/j.cell.2012.09.046
Takabayashi, J., Dicke, M., & Posthumus, M. A. (1994). Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. Journal of Chemical Ecology, 20, 1329–1354. https://doi.org/10.1007/BF02059811
Takemoto, H., & Takabayashi, J. (2015). Parasitic wasps Aphidius ervi are more attracted to a blend of host-induced plant volatiles than to the independent compounds. Journal of Chemical Ecology, 41, 801–807. https://doi.org/10.1007/s10886-015-0615-5
Tyc, O., Song, C., Dickschat, J. S., Vos, M., & Garbeva, P. (2017). The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends in Microbiology, 25, 280–292. https://doi.org/10.1016/j.tim.2016.12.002
van Oudenhove, L., Mailleret, L., & Fauvergue, X. (2017). Infochemical use and dietary specialization in parasitoids: A meta-analysis. Ecology and Evolution, 7, 4804–4811. https://doi.org/10.1002/ece3.2888
Vet, L. E. M., & Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology, 37, 141–172. https://doi.org/10.1146/annurev.en.37.010192.001041
Wäckers, F. L., & Lewis, W. J. (1994). Olfactory and visual learning and their interaction in host site location by Microplitis croceipes. Biological Control, 4, 105–112. https://doi.org/10.1006/bcon.1994.1018
Walker, G. P., & Cameron, P. J. (1981). The biology of Dendrocerus carpenteri (Hymenoptera: Ceraphronidae), a parasite of Aphidius species, and field observations of Dendrocerus species as hyperparasites of Acyrthosiphon species. New Zealand Journal of Zoology, 8, 531–538. https://doi.org/10.1080/03014223.1981.10427979
Wyatt, T. D. (2014). Pheromones and animal behavior. Cambridge, UK: Cambridge University Press.
Yanagawa, A., Imai, T., Akino, T., Toh, Y., & Yoshimura, T. (2015). Olfactory cues from pathogenic fungus affect the direction of motion of termites, Coptotermes formosanus. Journal of Chemical Ecology, 41, 1118–1126. https://doi.org/10.1007/s10886-015-0649-8
Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613–1617. https://doi.org/10.1099/ijsem.0.001755