Paper published in a journal (Scientific congresses and symposiums)
MARKER-LESS MOBILE AUGMENTED REALITY APPLICATION FOR MASSIVE 3D POINT CLOUDS AND SEMANTICS
Kharroubi, Abderrazzaq; Billen, Roland; Poux, Florent
2020In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII (B2), p. 255–261
Peer Reviewed verified by ORBi
 

Files


Full Text
isprs-archives-XLIII-B2-2020-255-2020.pdf
Publisher postprint (1.24 MB)
Download
Annexes
ISPRS 2020 Submission 1373.mp4
Publisher postprint (68.67 MB)
Request a copy

© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Augmented Reality; Web-AR; Marker-Less AR; 3D Point cloud; Semantics; Classification; Virtual environment
Abstract :
[en] Mobile Augmented Reality (MAR) attracts significant research and development efforts from both the industry and academia, but rarely integrate massive 3D dataset’s interactions. The emergence of dedicated AR devices and powerful Software Development Kit (ARCore for android and ARKit for iOS) improves performance on mobile devices (Smartphones and tablets). This is aided by new sensor integration and advances in computer vision that fuels the development of MAR. In this paper, we propose a direct integration of massive 3D point clouds with semantics in a web-based marker-less mobile Augmented Reality (AR) application for real-time visualization. We specifically investigate challenges linked to point cloud data structure and semantic injection. Our solution consolidates some of the overarching principles of AR, of which pose estimation, registration and 3D tracking. The developed AR system is tested on mobile phones web-browsers providing clear insights on the performance of the system. Promising results highlight a number of frame per second varying between 27 and 60 for a real-time point budget of 4.3 million points. The point cloud tested is composed of 29 million points and shows how our indexation strategy permits the integration of massive point clouds aiming at the point budget. The results also gives research directions concerning the dependence and delay related to the quality of the network connection, and the battery consumption since portable sensors are used all the time.
Disciplines :
Computer science
Earth sciences & physical geography
Author, co-author :
Kharroubi, Abderrazzaq  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Billen, Roland  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Poux, Florent  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Language :
English
Title :
MARKER-LESS MOBILE AUGMENTED REALITY APPLICATION FOR MASSIVE 3D POINT CLOUDS AND SEMANTICS
Alternative titles :
[fr] APPLICATION DE RÉALITÉ AUGMENTÉE MOBILE SANS MARQUEURS POUR NUAGES DE POINTS 3D MASSIFS ET SÉMANTIQUE
Publication date :
12 August 2020
Event name :
Virtual Event of the 2020 presentations of the XXIVth ISPRS Congress
Event organizer :
ISPRS
Event place :
Nice, France
Event date :
du 31 Août 2020 au 02 Septembre 2020
Audience :
International
Journal title :
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
ISSN :
1682-1750
eISSN :
2194-9034
Publisher :
Copernicus, Goettingen, Germany
Volume :
XLIII
Issue :
B2
Pages :
255–261
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 08 September 2020

Statistics


Number of views
279 (18 by ULiège)
Number of downloads
283 (7 by ULiège)

Scopus citations®
 
9
Scopus citations®
without self-citations
6
OpenCitations
 
4
OpenAlex citations
 
12

Bibliography


Similar publications



Contact ORBi