[en] The structural and physical properties of the β polymorph of iron tungstate Fe2WO6 have been investigated by synchrotron and neutron diffraction vs temperature, combined with magnetization and dielectric properties measurements. The monoclinic P21/a crystal structure of β-Fe2WO6 has been determined and consists of an original network of zigzag chains of FeO6 and WO6 octahedra sharing trans and skew edges, connected through corners into a 3D structure. Magnetization measurements indicate an antiferromagnetic transition at TN = 264 K, which corresponds to a ↑↑↓↓ nearly collinear ordering of iron moments inside sequences of four edge-sharing FeO6 octahedra, as determined by neutron diffraction. A canting of the moments out of the ac plane is observed below 150 K, leading to a noncollinear antiferromagnetic structure, the P21/a′ magnetic space group remaining unchanged. These results are discussed in comparison with the crystal and magnetic structures of γ-Fe2WO6 and with the magnetic couplings in other iron tungstates and trirutile Fe2TeO6.
Disciplines :
Physics
Author, co-author :
Caubergh, Stéphane ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Bera, S.; Rawal, S. B.; Kim, H. J.; Lee, W. I. Novel Coupled Structures of FeWO4/TiO2and FeWO4/TiO2/CdS Designed for Highly Efficient Visible-Light Photocatalysis. ACS Appl. Mater. Interfaces 2014, 6 (12), 9654-9663, 10.1021/am502079x
Zhou, Y.-X.; Yao, H.-B.; Zhang, Q.; Gong, J.-Y.; Liu, S.-J.; Yu, S.-H. Hierarchical FeWO4Microcrystals: Solvothermal Synthesis and Their Photocatalytic and Magnetic Properties. Inorg. Chem. 2009, 48 (3), 1082-1090, 10.1021/ic801806r
Sieber, K.; Leiva, H.; Kourtakis, K.; Kershaw, R.; Dwight, K.; Wold, A. Preparation and Properties of Substituted Iron Tungstates. J. Solid State Chem. 1983, 47 (3), 361-367, 10.1016/0022-4596(83)90029-4
Wang, Y.; Zeng, Y.; Chen, X.; Wang, Q.; Wan, S.; Wang, D.; Cai, W.; Song, F.; Zhang, S.; Zhong, Q. Tailoring Shape and Phase Formation: Rational Synthesis of Single-Phase BiFeWOxNanooctahedra and Phase Separated Bi2WO6-Fe2WO6Microflower Heterojunctions and Visible Light Photocatalytic Performances. Chem. Eng. J. 2018, 351, 295-303, 10.1016/j.cej.2018.06.040
Abdi, F. F.; Chemseddine, A.; Berglund, S. P.; van de Krol, R. Assessing the Suitability of Iron Tungstate (Fe2WO6) as a Photoelectrode Material for Water Oxidation. J. Phys. Chem. C 2017, 121 (1), 153-160, 10.1021/acs.jpcc.6b10695
Rawal, S. B.; Ojha, D. P.; Sung, S. Do; Lee, W. I. Fe2WO6/TiO2, an Efficient Visible-Light Photocatalyst Driven by Hole-Transport Mechanism. Catal. Commun. 2014, 56, 55-59, 10.1016/j.catcom.2014.07.007
Kozmanov, Y. D. Investigation of the High Temperature Oxidation of Some Iron Tungten Alloys. Zh. Fiz. Khim. 1957, 31, 1861
Senegas, J.; Galy, J. L'oxyde Double Fe2WO6. I. Structure Cristalline et Filiation Structurale. J. Solid State Chem. 1974, 10 (1), 5-11, 10.1016/0022-4596(74)90002-4
Weitzel, H. Magnetische Strukturen von NiNb2O6Und Fe2WO6. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32 (4), 592-597, 10.1107/S0567739476001265
Pinto, H.; Melamud, M.; Shaked, H. Magnetic Structure of Fe2WO6, a Neutron Diffraction Study. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1977, 33 (4), 663-667, 10.1107/S0567739477001648
Panja, S. N.; Kumar, J.; Harnagea, L.; Nigam, A. K.; Nair, S. γ-Fe2WO6-A Magnetodielectric with Disordered Magnetic and Electronic Ground States. J. Magn. Magn. Mater. 2018, 466, 354-358, 10.1016/j.jmmm.2018.07.046
Parant, C.; Bernier, J.-C.; Michel, A. Sur Deux Formes Orthorhombiques de Fe2WO6. C. R. Acad. Sc. Paris Série C 1973, 276, 495-497
Guskos, N.; Sadlowski, L.; Typek, J.; Likodimos, V.; Gamari-Seale, H.; Bojanowski, B.; Wabia, M.; Walczak, J.; Rychlowska-Himmel, I. Magnetic and EPR Studies of α-, β-, and γ-Fe2WO6Phases at Low Temperatures. J. Solid State Chem. 1995, 120 (2), 216-222, 10.1006/jssc.1995.1401
Guskos, N.; Likodimos, V.; Glenis, S.; Patapis, S. K.; Palilis, L. C.; Typek, J.; Wabia, M.; Rychlowska-Himmel, I. Electrical Transport and EPR Properties of the α, β, and γPhases of Fe2WO6. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 60 (11), 7687-7690, 10.1103/PhysRevB.60.7687
Walczak, J.; Rychiowska-Himmel, I.; Tabero, P. Iron(III) Tungstate and Its Modifications. J. Mater. Sci. 1992, 27 (13), 3680-3684, 10.1007/BF01151850
Fauth, F.; Boer, R.; Gil-Ortiz, F.; Popescu, C.; Vallcorba, O.; Peral, I.; Fullà, D.; Benach, J.; Juanhuix, J. The Crystallography Stations at the Alba Synchrotron. Eur. Phys. J. Plus 2015, 130 (8), 160, 10.1140/epjp/i2015-15160-y
van der Linden, P. J. E. M.; Moretti Sala, M.; Henriquet, C.; Rossi, M.; Ohgushi, K.; Fauth, F.; Simonelli, L.; Marini, C.; Fraga, E.; Murray, C.; Potter, J.; Krisch, M. A Compact and Versatile Dynamic Flow Cryostat for Photon Science. Rev. Sci. Instrum. 2016, 87 (11), 115103, 10.1063/1.4966270
Chapon, L. C.; Manuel, P.; Radaelli, P. G.; Benson, C.; Perrott, L.; Ansell, S.; Rhodes, N. J.; Raspino, D.; Duxbury, D.; Spill, E.; Norris, J. Wish: The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station. Neutron News 2011, 22 (2), 22-25, 10.1080/10448632.2011.569650
Altomare, A.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Rizzi, R.; Werner, P.-E. New Techniques for Indexing: N-TREOR in EXPO. J. Appl. Crystallogr. 2000, 33 (4), 1180-1186, 10.1107/S0021889800006427
Boultif, A.; Louer, D. Powder Pattern Indexing with the Dichotomy Method. J. Appl. Crystallogr. 2004, 37 (5), 724-731, 10.1107/S0021889804014876
Palatinus, L.; Chapuis, G. SUPERFLIP-a Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007, 40 (4), 786-790, 10.1107/S0021889807029238
Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General Features. Z. Kristallogr.-Cryst. Mater. 2014, 229 (5), 345-352, 10.1515/zkri-2014-1737
Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B 1993, 192 (1-2), 55-69, 10.1016/0921-4526(93)90108-I
Wells, A. F. Octahedral Structures. In Structural Inorganic Chemistry; Oxford University Press: London, 1975; pp 164-179.
Shannon, R. D.; Prewitt, C. T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1969, 25 (5), 925-946, 10.1107/S0567740869003220
Almeida, M. A. P.; Cavalcante, L. S.; Morilla-Santos, C.; Filho, P. N. L.; Beltrán, A.; Andrés, J.; Gracia, L.; Longo, E. Electronic Structure and Magnetic Properties of FeWO4Nanocrystals Synthesized by the Microwave-Hydrothermal Method. Mater. Charact. 2012, 73, 124-129, 10.1016/j.matchar.2012.08.006
Obermayer, H. A.; Dachs, H.; Schröcke, H. Investigations Concerning the Coexistence of Two Magnetic Phases in Mixed Crystals (Fe, Mn)WO4. Solid State Commun. 1973, 12 (8), 779-784, 10.1016/0038-1098(73)90838-7
Kunnmann, W.; La Placa, S.; Corliss, L. M.; Hastings, J. M.; Banks, E. Magnetic Structures of the Ordered Trirutiles Cr2WO6, Cr2TeO6and Fe2TeO6. J. Phys. Chem. Solids 1968, 29 (8), 1359-1364, 10.1016/0022-3697(68)90187-X
Ghara, S.; Suard, E.; Fauth, F.; Tran, T. T.; Halasyamani, P. S.; Iyo, A.; Rodríguez-Carvajal, J.; Sundaresan, A. Ordered Aeschynite-Type Polar Magnets RFeWO6(R = Dy, Eu, Tb, and Y): A New Family of Type-II Multiferroics. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 95 (22), 1-11, 10.1103/PhysRevB.95.224416
Pearson, R. G. Concerning Jahn-Teller Effects. Proc. Natl. Acad. Sci. U. S. A. 1975, 72 (6), 2104-2106, 10.1073/pnas.72.6.2104
Kunz, M.; Brown, I. D. Out-of-Center Distortions around Octahedrally Coordinated d0Transition Metals. J. Solid State Chem. 1995, 115 (2), 395-406, 10.1006/jssc.1995.1150
Halasyamani, P. S. Asymmetric Cation Coordination in Oxide Materials: Influence of Lone-Pair Cations on the Intra-Octahedral Distortion in d0Transition Metals. Chem. Mater. 2004, 16 (19), 3586-3592, 10.1021/cm049297g
Ok, K. M.; Halasyamani, P. S.; Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. Distortions in Octahedrally Coordinated d0Transition Metal Oxides: A Continuous Symmetry Measures Approach. Chem. Mater. 2006, 18 (14), 3176-3183, 10.1021/cm0604817
Pauling, L. The Principles Determining the Structure of Complex Ionic Crystals. J. Am. Chem. Soc. 1929, 51 (4), 1010-1026, 10.1021/ja01379a006
Zhu, M.; Do, D.; Dela Cruz, C. R.; Dun, Z.; Zhou, H. D.; Mahanti, S. D.; Ke, X. Tuning the Magnetic Exchange via a Control of Orbital Hybridization in Cr2(Te1-xWx)O6. Phys. Rev. Lett. 2014, 113 (7), 76406, 10.1103/PhysRevLett.113.076406
Weingart, C.; Spaldin, N.; Bousquet, E. Noncollinear Magnetism and Single-Ion Anisotropy in Multiferroic Perovskites. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86 (9), 94413, 10.1103/PhysRevB.86.094413