[en] The structural and physical properties of the β polymorph of iron tungstate Fe2WO6 have been investigated by synchrotron and neutron diffraction vs temperature, combined with magnetization and dielectric properties measurements. The monoclinic P21/a crystal structure of β-Fe2WO6 has been determined and consists of an original network of zigzag chains of FeO6 and WO6 octahedra sharing trans and skew edges, connected through corners into a 3D structure. Magnetization measurements indicate an antiferromagnetic transition at TN = 264 K, which corresponds to a ↑↑↓↓ nearly collinear ordering of iron moments inside sequences of four edge-sharing FeO6 octahedra, as determined by neutron diffraction. A canting of the moments out of the ac plane is observed below 150 K, leading to a noncollinear antiferromagnetic structure, the P21/a′ magnetic space group remaining unchanged. These results are discussed in comparison with the crystal and magnetic structures of γ-Fe2WO6 and with the magnetic couplings in other iron tungstates and trirutile Fe2TeO6.
Disciplines :
Physics
Author, co-author :
Caubergh, Stéphane ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bera, S.; Rawal, S. B.; Kim, H. J.; Lee, W. I. Novel Coupled Structures of FeWO4/TiO2and FeWO4/TiO2/CdS Designed for Highly Efficient Visible-Light Photocatalysis. ACS Appl. Mater. Interfaces 2014, 6 (12), 9654-9663, 10.1021/am502079x
Zhou, Y.-X.; Yao, H.-B.; Zhang, Q.; Gong, J.-Y.; Liu, S.-J.; Yu, S.-H. Hierarchical FeWO4Microcrystals: Solvothermal Synthesis and Their Photocatalytic and Magnetic Properties. Inorg. Chem. 2009, 48 (3), 1082-1090, 10.1021/ic801806r
Sieber, K.; Leiva, H.; Kourtakis, K.; Kershaw, R.; Dwight, K.; Wold, A. Preparation and Properties of Substituted Iron Tungstates. J. Solid State Chem. 1983, 47 (3), 361-367, 10.1016/0022-4596(83)90029-4
Wang, Y.; Zeng, Y.; Chen, X.; Wang, Q.; Wan, S.; Wang, D.; Cai, W.; Song, F.; Zhang, S.; Zhong, Q. Tailoring Shape and Phase Formation: Rational Synthesis of Single-Phase BiFeWOxNanooctahedra and Phase Separated Bi2WO6-Fe2WO6Microflower Heterojunctions and Visible Light Photocatalytic Performances. Chem. Eng. J. 2018, 351, 295-303, 10.1016/j.cej.2018.06.040
Abdi, F. F.; Chemseddine, A.; Berglund, S. P.; van de Krol, R. Assessing the Suitability of Iron Tungstate (Fe2WO6) as a Photoelectrode Material for Water Oxidation. J. Phys. Chem. C 2017, 121 (1), 153-160, 10.1021/acs.jpcc.6b10695
Rawal, S. B.; Ojha, D. P.; Sung, S. Do; Lee, W. I. Fe2WO6/TiO2, an Efficient Visible-Light Photocatalyst Driven by Hole-Transport Mechanism. Catal. Commun. 2014, 56, 55-59, 10.1016/j.catcom.2014.07.007
Kozmanov, Y. D. Investigation of the High Temperature Oxidation of Some Iron Tungten Alloys. Zh. Fiz. Khim. 1957, 31, 1861
Senegas, J.; Galy, J. L'oxyde Double Fe2WO6. I. Structure Cristalline et Filiation Structurale. J. Solid State Chem. 1974, 10 (1), 5-11, 10.1016/0022-4596(74)90002-4
Weitzel, H. Magnetische Strukturen von NiNb2O6Und Fe2WO6. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32 (4), 592-597, 10.1107/S0567739476001265
Pinto, H.; Melamud, M.; Shaked, H. Magnetic Structure of Fe2WO6, a Neutron Diffraction Study. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1977, 33 (4), 663-667, 10.1107/S0567739477001648
Panja, S. N.; Kumar, J.; Harnagea, L.; Nigam, A. K.; Nair, S. γ-Fe2WO6-A Magnetodielectric with Disordered Magnetic and Electronic Ground States. J. Magn. Magn. Mater. 2018, 466, 354-358, 10.1016/j.jmmm.2018.07.046
Parant, C.; Bernier, J.-C.; Michel, A. Sur Deux Formes Orthorhombiques de Fe2WO6. C. R. Acad. Sc. Paris Série C 1973, 276, 495-497
Guskos, N.; Sadlowski, L.; Typek, J.; Likodimos, V.; Gamari-Seale, H.; Bojanowski, B.; Wabia, M.; Walczak, J.; Rychlowska-Himmel, I. Magnetic and EPR Studies of α-, β-, and γ-Fe2WO6Phases at Low Temperatures. J. Solid State Chem. 1995, 120 (2), 216-222, 10.1006/jssc.1995.1401
Guskos, N.; Likodimos, V.; Glenis, S.; Patapis, S. K.; Palilis, L. C.; Typek, J.; Wabia, M.; Rychlowska-Himmel, I. Electrical Transport and EPR Properties of the α, β, and γPhases of Fe2WO6. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 60 (11), 7687-7690, 10.1103/PhysRevB.60.7687
Walczak, J.; Rychiowska-Himmel, I.; Tabero, P. Iron(III) Tungstate and Its Modifications. J. Mater. Sci. 1992, 27 (13), 3680-3684, 10.1007/BF01151850
Fauth, F.; Boer, R.; Gil-Ortiz, F.; Popescu, C.; Vallcorba, O.; Peral, I.; Fullà, D.; Benach, J.; Juanhuix, J. The Crystallography Stations at the Alba Synchrotron. Eur. Phys. J. Plus 2015, 130 (8), 160, 10.1140/epjp/i2015-15160-y
van der Linden, P. J. E. M.; Moretti Sala, M.; Henriquet, C.; Rossi, M.; Ohgushi, K.; Fauth, F.; Simonelli, L.; Marini, C.; Fraga, E.; Murray, C.; Potter, J.; Krisch, M. A Compact and Versatile Dynamic Flow Cryostat for Photon Science. Rev. Sci. Instrum. 2016, 87 (11), 115103, 10.1063/1.4966270
Chapon, L. C.; Manuel, P.; Radaelli, P. G.; Benson, C.; Perrott, L.; Ansell, S.; Rhodes, N. J.; Raspino, D.; Duxbury, D.; Spill, E.; Norris, J. Wish: The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station. Neutron News 2011, 22 (2), 22-25, 10.1080/10448632.2011.569650
Altomare, A.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Rizzi, R.; Werner, P.-E. New Techniques for Indexing: N-TREOR in EXPO. J. Appl. Crystallogr. 2000, 33 (4), 1180-1186, 10.1107/S0021889800006427
Boultif, A.; Louer, D. Powder Pattern Indexing with the Dichotomy Method. J. Appl. Crystallogr. 2004, 37 (5), 724-731, 10.1107/S0021889804014876
Palatinus, L.; Chapuis, G. SUPERFLIP-a Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007, 40 (4), 786-790, 10.1107/S0021889807029238
Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General Features. Z. Kristallogr.-Cryst. Mater. 2014, 229 (5), 345-352, 10.1515/zkri-2014-1737
Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B 1993, 192 (1-2), 55-69, 10.1016/0921-4526(93)90108-I
Wells, A. F. Octahedral Structures. In Structural Inorganic Chemistry; Oxford University Press: London, 1975; pp 164-179.
Shannon, R. D.; Prewitt, C. T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1969, 25 (5), 925-946, 10.1107/S0567740869003220
Almeida, M. A. P.; Cavalcante, L. S.; Morilla-Santos, C.; Filho, P. N. L.; Beltrán, A.; Andrés, J.; Gracia, L.; Longo, E. Electronic Structure and Magnetic Properties of FeWO4Nanocrystals Synthesized by the Microwave-Hydrothermal Method. Mater. Charact. 2012, 73, 124-129, 10.1016/j.matchar.2012.08.006
Obermayer, H. A.; Dachs, H.; Schröcke, H. Investigations Concerning the Coexistence of Two Magnetic Phases in Mixed Crystals (Fe, Mn)WO4. Solid State Commun. 1973, 12 (8), 779-784, 10.1016/0038-1098(73)90838-7
Kunnmann, W.; La Placa, S.; Corliss, L. M.; Hastings, J. M.; Banks, E. Magnetic Structures of the Ordered Trirutiles Cr2WO6, Cr2TeO6and Fe2TeO6. J. Phys. Chem. Solids 1968, 29 (8), 1359-1364, 10.1016/0022-3697(68)90187-X
Ghara, S.; Suard, E.; Fauth, F.; Tran, T. T.; Halasyamani, P. S.; Iyo, A.; Rodríguez-Carvajal, J.; Sundaresan, A. Ordered Aeschynite-Type Polar Magnets RFeWO6(R = Dy, Eu, Tb, and Y): A New Family of Type-II Multiferroics. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 95 (22), 1-11, 10.1103/PhysRevB.95.224416
Pearson, R. G. Concerning Jahn-Teller Effects. Proc. Natl. Acad. Sci. U. S. A. 1975, 72 (6), 2104-2106, 10.1073/pnas.72.6.2104
Kunz, M.; Brown, I. D. Out-of-Center Distortions around Octahedrally Coordinated d0Transition Metals. J. Solid State Chem. 1995, 115 (2), 395-406, 10.1006/jssc.1995.1150
Halasyamani, P. S. Asymmetric Cation Coordination in Oxide Materials: Influence of Lone-Pair Cations on the Intra-Octahedral Distortion in d0Transition Metals. Chem. Mater. 2004, 16 (19), 3586-3592, 10.1021/cm049297g
Ok, K. M.; Halasyamani, P. S.; Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. Distortions in Octahedrally Coordinated d0Transition Metal Oxides: A Continuous Symmetry Measures Approach. Chem. Mater. 2006, 18 (14), 3176-3183, 10.1021/cm0604817
Pauling, L. The Principles Determining the Structure of Complex Ionic Crystals. J. Am. Chem. Soc. 1929, 51 (4), 1010-1026, 10.1021/ja01379a006
Zhu, M.; Do, D.; Dela Cruz, C. R.; Dun, Z.; Zhou, H. D.; Mahanti, S. D.; Ke, X. Tuning the Magnetic Exchange via a Control of Orbital Hybridization in Cr2(Te1-xWx)O6. Phys. Rev. Lett. 2014, 113 (7), 76406, 10.1103/PhysRevLett.113.076406
Weingart, C.; Spaldin, N.; Bousquet, E. Noncollinear Magnetism and Single-Ion Anisotropy in Multiferroic Perovskites. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86 (9), 94413, 10.1103/PhysRevB.86.094413
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.