Supporting Information for:

Original network of zig-zag chains in the β polymorph of Fe₂WO₆: crystal structure and magnetic ordering

Stéphane Caubergh¹, Nami Matsubara^{2,3,†}, Françoise Damay³, Antoine Maignan², François Fauth⁴, Pascal Manuel⁵, Dmitry D. Khalyavin⁵, Bénédicte Vertruyen^{1,*} and Christine Martin²

¹GREENMAT, CESAM Research Unit, Université de Liège, 4000 Liege, Belgium

²CRISMAT, Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14000 Caen, France

³Université Paris-Saclay, CEA-CNRS UMR12, Laboratoire Léon Brillouin, 91191 Gif-sur-Yvette Cedex, France

⁴ALBA-CELLS Synchrotron, BP1413, 08290 Cerdanyola del Vallès, Barcelona, Spain

⁵ISIS Pulsed Neutron Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom

*E-mail for B. Vertruyen: <u>b.vertruyen@uliege.be</u>

Figure S1. Octahedra sharing (a) "skew" and (b) "trans" edges forming a zig-zag chain of octahedra.

Figure S2. Projections along [010] to show selected interatomic distances (in Å) and angles (in degrees) in β -Fe₂WO₆ at room temperature and 10K. Black dots in the middle of the W-W bonds correspond to the inversion center. WO₆ octahedra, blue; Fe1O₆ octahedra, red; Fe2O₆ octahedra, orange.

Figure S3. Representations of the environments and magnetic interactions of Fe1 and Fe2 in (**a**,**b**) β -Fe₂WO₆ and (**c**,**d**) γ -Fe₂WO₆. In β -Fe₂WO₆, Fe1 has 3 AFM and 1 FM interactions; Fe2 has 6 AFM and 1 FM interactions. In γ -Fe₂WO₆, Fe1 has 2 AFM and 2 FM interactions; Fe2 has 6 AFM interactions. Oxygen atoms are represented by dark green spheres.

Figure S4. Orientations of the Fe³⁺ moments in the FeO₆ octahedra (**a**) in β -Fe₂WO₆ at and above 150 K, (**b**) at 1.5 K and (**c**) in γ -Fe₂WO₆ at 4.2 K. The representations of individual octahedra show that the canting of the moment away from the *ac* plane in β -Fe₂WO₆ below 150 K corresponds to a realignment of the spin towards the basal plane of the octahedron.

WO ₆	X	У	Z	Fe1O ₆	X	У	Z	Fe2O6	X	У	Z
W1	0.5876	-0.0036	0.3613	Fe1	0.5853	-0.5085	-0.1451	Fe2	0.7449	0.0043	0.7708
O4	0.4760	-0.2190	0.3714	01	0.4686	-0.2568	-0.1315	03	0.6328	-0.2257	0.6648
05	0.6365	-0.2670	0.1789	04	0.5240	-0.7810	-0.3714	02	0.8110	-0.2691	0.5360
O3	0.6328	-0.2257	0.6648	01	0.5314	-0.7432	0.1315	O6	0.8055	-0.1995	1.0522
01	0.5314	0.2568	0.1315	03	0.6328	-0.2257	-0.3352	02	0.6890	0.2309	0.4640
O4	0.5240	0.2190	0.6286	05	0.6365	-0.2670	0.1789	O6	0.6945	0.3005	0.9478
O2	0.6890	0.2309	0.4640	O6	0.6945	-0.6995	-0.0522	05	0.8635	0.2330	0.8211
Barycenter	0.5816	-0.0008	0.4065	Barycenter	0.5813	-0.4955	-0.0967	Barycenter	0.7494	0.0117	0.7477

Off-centering 0.0903 Å -0.0127 Å -0.2531 Å Off-centering 0.0604 Å -0.0596 Å -0.2711 Å Off-centering -0.0677 Å -0.0339 Å 0.1296 Å Table S1. Atomic positions, barycenter positions and off-centering in the MO₆ octahedra in polymorph β at room temperature. Off-centering is expressed in Å and calculated as the difference between the positions of the cation and the barycenter.

WO ₆	X	У	Z	Fe1O ₆	X	У	Z	Fe2O ₆	X	У	Z
W1	0.5000	0.1128	0.7500	Fe1	0.5000	0.4436	0.7500	Fe2	0.5000	0.7758	0.7500
O4	0.2400	0.0409	0.5958	01	0.2266	0.3729	0.5692	03	0.2240	0.7035	0.5817
05	0.2760	0.2035	0.5817	O4	0.2600	0.4591	1.0958	02	0.2734	0.8729	0.5692
03	0.2734	0.1271	1.0692	01	0.2600	0.5409	0.5958	O6	0.2760	0.7965	1.0817
01	0.7600	0.0409	0.9042	03	0.7734	0.3729	0.9308	02	0.7760	0.7035	0.9183
O4	0.7266	0.1271	0.4308	05	0.7400	0.4591	0.4042	O6	0.7240	0.7965	0.4183
02	0.7240	0.2035	0.9183	O6	0.7400	0.5409	0.9042	05	0.7266	0.8729	0.9308
Barycenter	0.5000	0.1238	0.7500	Barycenter	0.5000	0.4576	0.7500	Barycenter	0.5000	0.7910	0.7500

Off-centering 0.0000 Å -0.1858 Å 0.0000 Å Off-centering 0.0000 Å -0.2353 Å 0.0000 Å Off-centering 0.0000 Å -0.2543 Å 0.0000 Å Table S2. Atomic positions, barycenter positions and off-centering in the MO₆ octahedra in polymorph γ at room temperature. Off-centering is expressed in Å and calculated as the difference between the positions of the cation and the barycenter.

WO ₆	X	У	Z	FeO ₆	X	У	Z
W	0.0000	0.1808	0.2500	Fe	0.5000	0.3215	0.7500
01	-0.2158	-0.1068	0.4167	01	0.2158	0.1068	0.5833
01	-0.2158	0.1068	-0.0833	O2	0.2623	0.6150	0.5912
02	-0.2623	0.3850	0.4088	O2	0.2623	0.3850	1.0912
01	0.2158	-0.1068	0.0833	01	0.7842	0.1068	0.9167
01	0.2158	0.1068	0.5833	O2	0.7377	0.3850	0.4088
02	0.2623	0.3850	0.0912	O2	0.7377	0.6150	0.9088
Barycenter	0.0000	0.1283	0.2500	Barycenter	0.5000	0.3689	0.7500
Off-centering	0.0000 Å	0.3001 Å	0.0000 Å	Off-centering	0.0000 Å	-0.2713 Å	0.0000 Å

Table S3. Atomic positions, barycenter positions and off-centering in the MO_6 octahedra in FeWO₄ at room temperature. Off-centering is expressed in Å and calculated as the difference between the positions of the cation and the barycenter.

β-Fe2WO6 structure at RT								
		Charge distribution Q	Charge distribution Q					
		(with Fe and W	(with Fe and W					
Site	Formal charge q	on actual positions)	at barycenters)					
W	6	6.05	5.54					
Fe1	3	2.997	3.189					
Fe2	3	2.953	3.267					

Table S4. Comparison of q, the formal charge of the cations, and Q, the value calculated for each octahedron using the implementation in the Vesta software [K. Momma and F. Izumi, J. Appl. Crystallogr. 44 (2011) 1272–1276] of the charge distribution method [M. Nespolo, G. Ferraris, R. Hoppe, J. Ceram. Process. Res. 2 (2001) 38–44]. The agreement between the formal charge and the actual structure is excellent.