[en] Imaging the subsurface of the Earth is of prime concern in geosciences. In this scope, geophysics offers a wide range of methods that are able to produce models of the subsurface, classically through inversion processes. Deterministic inversions lack the ability to produce satisfactory quantifications of uncertainty, whereas stochastic inversions are often computationally demanding. In this paper, a new method to interpret geophysical data is proposed in order to produce 1D imaging of the subsurface along with the uncertainty on the associated parameters. This new approach called Bayesian Evidential Learning 1D imaging (BEL1D) relies on the constitution of statistics-based relationships between simulated data and associated model parameters. The method is applied to surface nuclear magnetic resonance for both a numerical example and field data. The obtained results are compared to the solutions provided by other approaches for the interpretation of these datasets, to demonstrate the robustness of BEL1D. Although this contribution demonstrates the framework for surface nuclear magnetic resonance geophysical data, it is not restricted to this type of data but can be applied to any 1D inverse problem.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Michel, Hadrien ; Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Nguyen, Frédéric ; Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Kremer, Thomas; Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Elen, Ann; Katholieke Universiteit Leuven - KUL > Departement of Earth and Environmental Sciences
Hermans, Thomas; Universiteit Gent - UGent > Departement of Geology
Language :
English
Title :
1D geological imaging of the subsurface from geophysical data with Bayesian Evidential Learning
Alternative titles :
[fr] Imagerie géologique 1D du sous-sol à partir de données géophysiques avec Bayesian Evidential Learning
Aster, R., Borchers, B., Thurber, C., Parameters Estimation and Inverse Problems. second ed., 2013, Academic Press.
Behroozmand, A.A., Auken, E., Fiandaca, G., Rejkjaer, S., Increasing the resolution and the signal-to-noise ratio of magnetic resonance sounding data using a central loop configuration. Geophys. J. Int. 205 (2016), 243–256, 10.1093/gji/ggw004.
Behroozmand, A.A., Keating, K., Auken, E., A review of the principles and applications of the NMR technique for near-surface characterization. Surv. Geophys. 36 (2015), 27–85, 10.1007/s10712-014-9304-0.
Bobe, C., Van De Vijver, E., Keller, J., Hanssens, D., Van Meirvenne, M., De Smedt, P., Probabilistic One-Dimensional Inversion of Frequency-Domain Electromagnetic Data Using a Kalman Ensemble Generator. 2019 arXiv:1911.03275 [physics].
Bowman, A.W., Azzalini, A., Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-Plus Illustrations. Oxford Statistical Science Series, 1997, Oxford University Press, Oxford, New York.
Devroye, L., Non-uniform Random Variate Generation. 1986, Springer, New York.
García-Jerez, A., Piña-Flores, J., Sánchez-Sesma, F.J., Luzón, F., Perton, M., A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption. Comput. Geosci. 97 (2016), 67–78, 10.1016/j.cageo.2016.06.016.
Gilson, M., Briers, P., Ruthy, I., Dassargues, A., Elsenborn - Langert - Dreiherrenwald. 2017.
Principal manifolds for data visualization and dimension reduction. Gorban, A.N., Kégl, B., Wunsch, D.C., Zinovyev, A.Y., (eds.) Lecture Notes in Computational Science and Enginee, 2008, Springer Berlin Heidelberg, Berlin, Heidelberg, 10.1007/978-3-540-73750-6.
Hanssens, D., Delefortrie, S., Bobe, C., Hermans, T., De Smedt, P., Improving the reliability of soil EC-mapping: robust apparent electrical conductivity (rECa) estimation in ground-based frequency domain electromagnetics. Geoderma 337 (2019), 1155–1163, 10.1016/j.geoderma.2018.11.030.
Hermans, T., Lesparre, N., De Schepper, G., Robert, T., Bayesian evidential learning : a field validation using push-pull tests. Hydrogeol. J., 2019 (in press).
Hermans, T., Nguyen, F., Klepikova, M., Dassargues, A., Caers, J., Uncertainty quantification of medium-term heat storage from short-term geophysical experiments using bayesian evidential learning. Water Resour. Res. 54 (2018), 2931–2948, 10.1002/2017WR022135.
Hermans, T., Oware, E., Caers, J., Direct prediction of spatially and temporally varying physical properties from time-lapse electrical resistance data. Water Resour. Res. 52 (2016), 7262–7283, 10.1002/2016WR019126.
Hertrich, M., Braun, M., Gunther, T., Green, A.G., Yaramanci, U., Surface nuclear magnetic resonance tomography. IEEE Trans. Geosci. Rem. Sens. 45 (2007), 3752–3759, 10.1109/TGRS.2007.903829.
Irving, J., Singha, K., Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities. Water Resour. Res., 46, 2010, 10.1029/2009WR008340.
Jha, M.K., Kumar, S., Chowdhury, A., Vertical electrical sounding survey and resistivity inversion using genetic algorithm optimization technique. J. Hydrol. 359 (2008), 71–87, 10.1016/j.jhydrol.2008.06.018.
Kemna, A., Kulessa, B., Vereecken, H., Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J. Hydrol. 267 (2002), 125–146.
Kemna, A., Nguyen, F., Gossen, S., On linear model uncertainty computation in electrical imaging. Presented at the SIAM Conferance on Mathematical and Computational Issues in Geosciences, 2007 Santa Fe.
Krzanowski, W.J., Principles of multivariate analysis: a user's perspective. Oxford Statistical Series, Revised Edition, 2000, Oxford University Press, New York.
LaBrecque, D.J., Miletto, M., Daily, W., Ramirez, A., Owen, E., The effects of noise on Occam's inversion of resistivity tomography data. Geophysics 61 (1996), 538–548.
Laloy, E., Hérault, R., Lee, J., Jacques, D., Linde, N., Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network. Adv. Water Resour. 110 (2017), 387–405, 10.1016/j.advwatres.2017.09.029.
Laloy, E., Linde, N., Ruffino, C., Hérault, R., Gasso, G., Jacques, D., Gradient-based deterministic inversion of geophysical data with generative adversarial networks: is it feasible?. Comput. Geosci., 133, 2019, 104333, 10.1016/j.cageo.2019.104333.
Lawrence, N.D., A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction: Insights and New Models 30. 2012.
Lawyer, L.C., Bates, C., Rice, R., Geophysics in the Affairs of Mankind: a Personalized History of Exploration Geophysics. Society of Exploration Geophysics, second ed., 2001 Tulsa, Oklahoma.
Lesparre, N., Nguyen, F., Kemna, A., Robert, T., Hermans, T., Daoudi, M., Flores-Orozco, A., A new approach for time-lapse data weighting in electrical resistivity tomography. Geophysics 82 (2017), E325–E333, 10.1190/geo2017-0024.1.
Li, J., Lu, X., Farquharson, C.G., Hu, X., A finite-element time-domain forward solver for electromagnetic methods with complex-shaped loop sources. Geophysics 83 (2018), E117–E132, 10.1190/geo2017-0216.1.
McKay, M.D., Beckman, R.J., Conover, W.J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 1979, 239, 10.2307/1268522.
Müller-Petke, M., Braun, M., Hertrich, M., Costabel, S., Walbrecker, J., MRSmatlab — a software tool for processing, modeling, and inversion of magnetic resonance sounding data. Geophysics, 81, 2016, 10.1190/geo2015-0461.1 WB9–WB21.
Müller-Petke, M., Yaramanci, U., QT inversion — comprehensive use of the complete surface NMR data set. Geophysics 75 (2010), WA199–WA209, 10.1190/1.3471523.
Nguyen, F., Kemna, A., Robert, T., Hermans, T., Data-driven selection of the minimum-gradient support parameter in time-lapse focused electric imaging. Geophysics 81 (2016), A1–A5, 10.1190/geo2015-0226.1.
Park, J., Yang, G., Satija, A., Scheidt, C., Caers, J., DGSA: a Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments. Comput. Geosci. 97 (2016), 15–29, 10.1016/j.cageo.2016.08.021.
Phelps, G., Scheidt, C., Caers, J., Exploring viable geologic interpretations of gravity models using distance-based global sensitivity analysis and kernel methods. Geophysics 83 (2018), G79–G92, 10.1190/geo2017-0742.1.
Rücker, C., Günther, T., Wagner, F.M., pyGIMLi: an open-source library for modelling and inversion in geophysics. Comput. Geosci. 109 (2017), 106–123, 10.1016/j.cageo.2017.07.011.
Sambridge, M., Monte Carlo methods in geophysical inverse problems. Rev. Geophys., 40, 2002, 10.1029/2000RG000089.
Satija, A., Caers, J., Direct forecasting of subsurface flow response from non-linear dynamic data by linear least-squares in canonical functional principal component space. Adv. Water Resour. 77 (2015), 69–81, 10.1016/j.advwatres.2015.01.002.
Scheidt, C., Renard, P., Caers, J., Prediction-focused subsurface modeling: investigating the need for accuracy in flow-based inverse modeling. Math. Geosci. 47 (2015), 173–191.
Socco, L.V., Foti, S., Boiero, D., Surface-wave analysis for building near-surface velocity models — established approaches and new perspectives. Geophysics 75 (2010), 75A83–75A102, 10.1190/1.3479491.
Trainor-Guitton, W., Hoversten, G.M., Stochastic inversion for electromagnetic geophysics: practical challenges and improving convergence efficiency. Geophysics 76 (2011), F373–F386, 10.1190/geo2010-0223.1.
Vrugt, J.A., Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation. Environ. Model. Software 75 (2016), 273–316, 10.1016/j.envsoft.2015.08.013.
Wand, M.P., Jones, M.C., Comparison of smoothing parameterizations in bivariate kernel density estimation. J. Am. Stat. Assoc., 88, 1993, 520, 10.2307/2290332.
Wastiaux, C., Les tourbières sont-elles des éponges régularisant l’écoulement ?. Bull. Soc. Géogr. Liege, 50, 2008.
Wastiaux, C., Schumacker, R., Topographie de surface et de subsurface des zones tourbeuses des réserves naturelles domaniales des Hautes-Fagnes (No. C60/1-2-3). Université de Liège, Service de phytosociologie, flore et végétation des Hautes-Fagnes. 2003.
Yang, F., Ma, J., Deep-learning inversion: a next-generation seismic velocity model building method. Geophysics 84 (2019), R583–R599, 10.1190/geo2018-0249.1.