Article (Scientific journals)
1D geological imaging of the subsurface from geophysical data with Bayesian Evidential Learning
Michel, Hadrien; Nguyen, Frédéric; Kremer, Thomas et al.
2020In Computers and Geosciences, 138
Peer Reviewed verified by ORBi
 

Files


Full Text
BEL1D_preprint.pdf
Author preprint (1.52 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
1D imaging; uncertainty; Bayesian Evidential Learning; machine learning; SNMR; MATLAB
Abstract :
[en] Imaging the subsurface of the Earth is of prime concern in geosciences. In this scope, geophysics offers a wide range of methods that are able to produce models of the subsurface, classically through inversion processes. Deterministic inversions lack the ability to produce satisfactory quantifications of uncertainty, whereas stochastic inversions are often computationally demanding. In this paper, a new method to interpret geophysical data is proposed in order to produce 1D imaging of the subsurface along with the uncertainty on the associated parameters. This new approach called Bayesian Evidential Learning 1D imaging (BEL1D) relies on the constitution of statistics-based relationships between simulated data and associated model parameters. The method is applied to surface nuclear magnetic resonance for both a numerical example and field data. The obtained results are compared to the solutions provided by other approaches for the interpretation of these datasets, to demonstrate the robustness of BEL1D. Although this contribution demonstrates the framework for surface nuclear magnetic resonance geophysical data, it is not restricted to this type of data but can be applied to any 1D inverse problem.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Michel, Hadrien  ;  Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Nguyen, Frédéric ;  Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Kremer, Thomas;  Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Elen, Ann;  Katholieke Universiteit Leuven - KUL > Departement of Earth and Environmental Sciences
Hermans, Thomas;  Universiteit Gent - UGent > Departement of Geology
Language :
English
Title :
1D geological imaging of the subsurface from geophysical data with Bayesian Evidential Learning
Alternative titles :
[fr] Imagerie géologique 1D du sous-sol à partir de données géophysiques avec Bayesian Evidential Learning
Publication date :
May 2020
Journal title :
Computers and Geosciences
ISSN :
0098-3004
eISSN :
1873-7803
Publisher :
Elsevier, United Kingdom
Volume :
138
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
BISHOP
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 02 July 2020

Statistics


Number of views
99 (19 by ULiège)
Number of downloads
299 (8 by ULiège)

Scopus citations®
 
23
Scopus citations®
without self-citations
12
OpenCitations
 
12
OpenAlex citations
 
32

Bibliography


Similar publications



Contact ORBi