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Abstract: 

Imaging the subsurface of the Earth is of prime concern in geosciences. In this scope, 

geophysics offers a wide range of methods that are able to produce models of the subsurface, 

classically through inversion processes. Deterministic inversions lack the ability to produce 

satisfactory quantifications of uncertainty, whereas stochastic inversions are often 

computationally demanding. In this paper, a new method to interpret geophysical data is 

proposed in order to produce 1D imaging of the subsurface along with the uncertainty on the 

associated parameters. This new approach called Bayesian Evidential Learning 1D imaging 

(BEL1D) relies on the constitution of statistics-based relationships between simulated data and 

associated model parameters. The method is applied to surface nuclear magnetic resonance for 

both a numerical example and field data. The obtained results are compared to the solutions 

provided by other approaches for the interpretation of these datasets, to demonstrate the 

robustness of BEL1D. Although this contribution demonstrates the framework for surface 

nuclear magnetic resonance geophysical data, it is not restricted to this type of data but can be 

applied to any 1D inverse problem. 

Keywords: 1D imaging, uncertainty, Bayesian Evidential Learning, machine learning, SNMR, 

MATLAB. 
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1. Introduction 1 

Imaging the subsurface of the Earth through geophysical methods allows reducing 2 

costly invasive investigations or is sometimes the only way to investigate the Earth. Behind the 3 

geophysical images are models conceptualized in terms of physical properties (density, seismic 4 

velocities or resistivity) which may be converted to properties of interests (hydraulic 5 

conductivity, porosity or temperature) using petrophysical relationships. Decision-making, 6 

whether planning additional investigations for a scientific project, exploiting a geo-resource, or 7 

constructing a building, is often a driver for geophysical methods (Lawyer et al., 2001). 8 

Uncertainty assessment on those geophysical models is therefore a key concern to 9 

geophysicists, as it provides a much more consistent information in decision-making processes 10 

(Scheidt et al., 2018). 11 

Computation methods to process geophysical data into models (other than simple 12 

mapping of the data) are either deterministic, often using the regularization approach, or 13 

stochastic, often using the Bayesian framework. Deterministic methods are limited in terms of 14 

uncertainty quantification and often rely on linear data error propagation based on a linearized 15 

approximation if needed (Aster et al., 2013; Kemna et al., 2007). On the other hand, stochastic 16 

methods may compute sets of models based on numerous inversions of perturbed datasets, or 17 

on the exploration of a prior model space using Markov chain Monte Carlos (McMC) methods 18 

(Aster et al., 2013; Sambridge, 2002). 19 

Recently, due to the rise of computer performances, stochastic methods have been 20 

applied to geophysics and are able to quantify more properly uncertainty. Most algorithms rely 21 

on Markov chains Monte Carlos (McMC) methods in order to explore the prior model space 22 

(Sambridge, 2002). Those methods offer the advantage to provide a much more complete 23 

appraisal of the ensemble of possible solutions. Nevertheless, stochastic methods are often 24 
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linked to high computation costs, since they require a large number of forward model runs to 25 

sample the posterior distribution in the prior model space, explaining why they are still often 26 

limited to scientific or numerical studies (e.g., Irving and Singha, 2010; Trainor-Guitton and 27 

Hoversten, 2011). Approximation of the posterior can be obtained (under some assumptions) 28 

through ensemble-based inversion (e.g., Bobe et al., 2019). Even more recently, machine 29 

learning also emerged as a potential contender to replace the inversion process, typically 30 

yielding to deterministic-like results due to the nature of neural networks and such (e.g., Laloy 31 

et al., 2019, 2017; Yang and Ma, 2019).  32 

In this paper, we present Bayesian Evidential Learning (BEL) (Scheidt et al., 2018) as 33 

an innovative method for the unidimensional geophysical imaging of the subsurface. Bayesian 34 

Evidential Learning (BEL) is a general framework to handle data in geosciences, from the 35 

optimization of the data acquisition to the data interpretation, prior falsification, global 36 

sensitivity analysis, and the prediction of relevant model responses (Scheidt et al., 2018). 37 

We will refer to the approach presented here as Bayesian Evidential Learning 1D 38 

imaging (BEL1D). It uses statistics-based relationships between forecast variables and data 39 

learned from realizations sampled from a prior distribution. As opposed to inversion methods, 40 

this approach does not require the time-consuming inversion of the dataset, but rather numerous 41 

(and parallelized) runs of the faster forward model. So far, BEL has been used to predict the 42 

dynamical response of subsurface models from well monitoring data (Satija and Caers, 2015), 43 

push-pull tests (Hermans et al., 2019) or time-lapse geophysical experiments (Hermans et al., 44 

2018), i.e. model predictions mostly characterized by smooth variations in time and/or in space. 45 

BEL was also applied to show the non-uniqueness of the gravity inverse problem (Phelps et al., 46 

2018). 47 

In this contribution, we extend BEL to 1D geophysical imaging. Such 1D imaging arises 48 

in many geophysical methods where forward models assume a succession of homogeneous 49 
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horizontal layers such as surface nuclear magnetic resonance (SNMR e.g., Behroozmand et al., 50 

2015), surface seismic waves (e.g., Socco et al., 2010), electromagnetic surveys (e.g., Hanssens 51 

et al., 2019; Li et al., 2018), or vertical electrical sounding (e.g., Jha et al., 2008). 52 

The main contributions of this paper compared to previous works are: 53 

1) The application of BEL1D for static geophysical imaging. Here, we predict directly 54 

the posterior distribution of spatially distributed geophysical model parameters.  55 

2) The estimation of the data-prediction relationship using kernel density estimation 56 

instead of Gaussian regression, because the former can be applied when the 57 

relationship deviates from linearity and Gaussian assumptions. 58 

3) The validation of the approach by comparing it with state-of-the-art McMC 59 

4) The link made between distance-based global sensitivity analysis and the canonical 60 

correlation analysis, yielding similar results. 61 

5) The analysis of the number of samples in the prior. 62 

This paper first introduces our implementation of BEL: Bayesian Evidential Learning 63 

1D imaging (BEL1D). The method is then validated within a numerical example. To 64 

demonstrate the broad applicability of our approach, we also provide a validation within a non-65 

geophysical related inverse problem (supplementary material: “Testing BEL1D on a synthetic 66 

mind experiment: oscillations of a pendulum”). Then, we present an example of BEL1D applied 67 

to field data, providing evidence that the method is already mature. Finally, we discuss on 68 

elements governing the accuracy of BEL1D, such as the number of models sampled in the prior 69 

and the choice of the bandwidth for kernel density estimation.  70 
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2. BEL for 1D imaging: methodology  71 

In this work, the focus is on computing geophysical models and assessing the 72 

uncertainty of the inferred models (Phelps et al., 2018). This interpretation part of BEL is also 73 

known as the prediction-focused approach (PFA), introduced by Scheidt et al. (2015). Contrary 74 

to deterministic approaches, this method does not rely on the stabilization of the ill-posed 75 

inverse problem, such as regularization for example, that imposes non-realistic constraint to the 76 

solution. It rather relies on the constitution of statistical relationships between predictors (the 77 

set of parameters of interest to the end-user) and data. These relationships are originating from 78 

models and (numerical) simulations of the geophysical problem that reflect the available prior 79 

knowledge. 80 

BEL has already been applied previously to geophysical data – time-lapse electrical 81 

resistivity – by Hermans et al. (2016). Hermans et al. (2016) demonstrated the applicability of 82 

BEL to predict variations of subsurface physical properties with time-lapse electrical resistivity 83 

data. More broadly, they also demonstrated that BEL was a possible tool for geophysicists. 84 

However, Hermans et al. (2016) presented a scheme that required numerical simulations 85 

of groundwater flow and transport and petrophysical relationships specific to hydrogeophysical 86 

monitoring (i.e. time-lapse data), limiting the extend of the geophysical prior model. Solving 87 

the time-lapse problem in geophysics is easier because we can invert for changes in the model 88 

(e.g., Kemna et al., 2002; Nguyen et al., 2016). In Hermans et al., (2016), a petrophysical 89 

relationship and the background distribution of resistivity were taken as known, which 90 

simplified the inference of the posterior distribution. Static data are also characterized by a 91 

higher noise level and thus more challenging to process (LaBrecque et al., 1996; Lesparre et 92 

al., 2017). This is also the first application where BEL is used to directly estimate spatially 93 

distributed model parameters. In our case, the forecast variables are static geophysical models, 94 
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directly linked to the geophysical experiment, hence no petrophysical relationship is required. 95 

Such situations generally bear more prior uncertainty and wider variability. Moreover, our aim 96 

is to propose a fast generation of subsurface models along with uncertainties. The adapted 97 

BEL1D method consists of six steps (Figure 1): 98 

1. Definition of the prior uncertainty based on prior field knowledge, generation of 99 

prior models (yellow box in Figure 1) and associated data (blue box in Figure 1) 100 

by forward modeling 101 

2. Reduction of the dimensionality of the data using principal component analysis 102 

(PCA) 103 

3. Constitution of statistical relationships between the model parameters and the 104 

reduced data (green cloud in Figure 1), using canonical correlation analysis 105 

(CCA) 106 

4. Generation of posterior distributions for the model parameters in reduced space 107 

by constraining the bivariate distributions to field data (red box in Figure 1) 108 

using kernel density estimators (contrary to previously used Gaussian process 109 

regression (Hermans et al., 2016)) 110 

5. Sampling of the constituted (non-Gaussian) distributions 111 

6. Back-transformation of the samples into the original space, delivering a set of 112 

1D models of the subsurface that are constrained to the knowledge of the 113 

geophysical data (purple box in Figure 1).  114 

Each step is explained in detail in the following sections.  115 
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 116 

Figure 1: Illustration of the BEL1D process. See text for abbreviation. 117 

Although BEL1D can be applied to any 1D inverse problem, for the clarity of the paper, 118 

we briefly introduce SNMR, the specific method chosen to illustrate the BEL1D method. 119 

SNMR is a geophysical technique dedicated to the detection and characterization of aquifers, 120 

whose main advantage and particularity is that the measured signal (an exponential decay) is 121 

directly linked to the amount of water present in the subsurface. For more details about the 122 

nature and origin of the SNMR signal, we refer to Behroozmand et al. (2015). The main goal 123 

of SNMR experiments is to retrieve the distribution of the water content and the relaxation time 124 

with depth. The latter depends on the pore space geometry and can be related to hydrodynamic 125 

parameters such as the porosity or the permeability. The acquisition of SNMR data on the field 126 

consists in the injection of an alternative current in a transmission loop (typically circular or in 127 

an eight-shape) directly followed by the measurement of the induced current in the reception 128 

loop (often the same as the transmission loop). The injection is tuned at the resonance frequency 129 
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of water (called the Larmor frequency), perturbing the quantum state of protons contained in 130 

water molecules. Once the injection is stopped, the protons are relaxed back to their original 131 

state, inducing a current with a decreasing amplitude with time in the receiver loop. This 132 

response is called the free-induction decay (FID) and constitutes the collected data. The 133 

injection is repeated with different pulse moments, sounding different zones of the subsurface. 134 

2.1. Step 1: prior realizations and associated data 135 

In BEL1D, the models are described in a classic manner with a finite number of layers 136 

𝑁𝐿, the last one being a half-space. For each layer, the 𝑁𝑃 physical properties related to the 137 

geophysical experiment and layer thickness are assigned. This means that a model can be 138 

described with a low number of parameters: (𝑁𝐿 × (𝑁𝑃 + 1)) − 1 = 𝑞. Defining the prior 139 

model space 𝑓𝐻(𝒎), i.e. the space describing the prior knowledge of the subsurface physical 140 

properties before data acquisition, consists in assigning a distribution to the values of each of 141 

those 𝑞 parameters. The shapes of those distributions are unconstrained and must best represent 142 

the prior knowledge of the survey site, either originating from previous experiments or from 143 

general geological and geophysical considerations. Once the prior model space is defined, we 144 

generate random models within the prior boundaries, hereafter called prior realization: 145 

𝒎 (𝑞 × 1) ∈ 𝑓𝐻(𝒎).  146 

For example, the prior model space for SNMR experiments is defined using both the 147 

water content (in %) and relaxation time (in ms) distributions along depth. This leads to a finite 148 

number of layers, of unknown thickness, and of unknown water content and relaxation time, 149 

thus to the description of a model with only five parameters for a 2-layer model. 150 

For all prior realizations, we compute their associated response using the same 151 

acquisition parameters as the experimental conditions. Doing so, we produce the synthetic data 152 
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vector: 𝒅 (𝑙 × 1). To perform this operation, we use the (non-linear) forward operators (𝐾) of 153 

the geophysical problem of interest such that 154 

 𝒅 = 𝐾(𝒎) (1) 

For more details about the forward operator associated with the SNMR method, we refer 155 

to Hertrich et al. (2007). Often, the dimensionality of the data (𝑙) is relatively large. For SNMR, 156 

the data space is composed of tens of time-decaying signals (one for each pulse moment) with 157 

sampling rates on the order of 100 Hz measured for about 1 seconds, thus resulting in several 158 

thousands of dimensions.  159 

2.2. Step 2: reduction of the dimensionality of the data using principal component 160 

analysis 161 

At this stage, we have generated the “model space” which contains the prior realizations, 162 

and the “data space” which contains the synthetic geophysical data sets associated with each 163 

model. To explore the statistical relationships that exist between these two spaces, one must 164 

first ensure that their dimensionality is sufficiently low (typically about 10 dimensions per 165 

space) to allow for reasonable computational costs. In the case of SNMR, as in most other cases 166 

if the prior models space remains simple, the model space will generally have a reasonable 167 

number of dimensions, thus no dimension reduction is required (𝒎𝒇 = 𝒎 (𝑞 × 1)). As stated 168 

previously, the data space is generally large and cannot be handled properly under reasonable 169 

computational costs. In this case, the Principle Component Analysis (PCA) technique can be 170 

used to transform the data space and reduce its dimensionality while preserving its original 171 

variability. 172 

The PCA method seeks for linear combinations of variables that maximize the 173 

variability in the first dimensions using eigenvalue decomposition (Krzanowski, 2000). This 174 

operation results in PCA scores, the values of the transformed data. This way, the first 175 

dimensions are the most informative about the dataset, and the others only represents a small 176 
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amount of the variability. Those later can be discarded, to gain memory and ease following 177 

computations. In the SNMR context, the same process is applied to the original data space and 178 

performs very well since the dimensions are often highly correlated. The obtained reduced data 179 

space has a dimensionality 𝑘 ≪ 𝑙 and is noted 𝒅𝒇 (𝑘 × 1). Note that in other geophysical 180 

problems, this PCA step may not be necessary if the dimensions of both the model and data 181 

space are low or may also be necessary for both the model and data spaces if their dimensions 182 

are too high. Noise analysis using Monte Carlo simulations (Hermans et al. , 2016) provides 183 

covariance between the different PCA components representing the data (𝐶𝑓). This translates 184 

in uncertainties on the PCA scores of the test data. The detailed procedure for noise propagation 185 

is presented in subsection 2.7. 186 

2.3. Step 3: constitution of statistical relationships between the models parameters 187 

and the reduced data, using canonical correlation analysis 188 

BEL1D relies on the constitution of statistics-based relationships between earth models 189 

and simulated data. This step is the core of BEL1D. Several methods are suitable to derive such 190 

a relationship, but we choose canonical correlation analysis (CCA) for its simplicity. In essence, 191 

CCA transforms the (possibly PCA-reduced) model space (𝒎𝒇) and the PCA data space (𝒅𝒇), 192 

so that the canonical correlation (an approach formula of the correlation) between the resulting 193 

CCA spaces (𝒎𝒄 – Equation 2 – and 𝒅𝒄 – Equation 3) is maximized (Krzanowski, 2000). Each 194 

of the dimensions of the CCA spaces are orthogonal, meaning that there is no redundancy 195 

between the dimensions. We obtain: 196 

 𝒅𝒄 = 𝒅𝒇𝑨𝑻 (2) 

 𝒎𝒄 = 𝒎𝒇𝑩𝑻 (3) 

where 𝑨 is a matrix of dimensions 𝑚 × 𝑘 and 𝑩 is a matrix of dimensions 𝑚 × 𝑞 (𝑚 is the 197 

minimum between 𝑘 and 𝑞). Graphically, we can observe the statistical relationship between 198 

𝒅𝒄 and 𝒎𝒄 as both spaces have the same dimensions (1 × 𝑚). As long as 𝑘 is larger than 𝑞, it 199 
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is possible to back-transform the models from the CCA model space to the original model space 200 

using the inverse of 𝑩 (Hermans et al., 2016).  201 

2.4. Step 4: generation of posterior distributions for the model parameters in CCA 202 

space using kernel density estimators 203 

In canonically correlated space, the correlation between dimensions is maximized. 204 

Hence, it is possible to produce a meaningful statistical description of the bi-variate distribution. 205 

This enables to determine a posterior distribution in the CCA model space constrained by the 206 

knowledge of field data. This posterior distribution represents the probability density function 207 

for the model parameters in the CCA model space. To approximate the posterior distribution 208 

corresponding to the observed data 𝑓𝐻(𝒎𝒄|𝒅𝒐𝒃𝒔
𝒄 ), we use a kernel density estimator (KDE) with 209 

a Gaussian kernel (Wand and Jones, 1993) similar to Hermans et al. (2019) where they faced 210 

non-linearity issues when validating BEL for hydrogeology. Gaussian regression (Hermans et 211 

al., 2016; Satija and Caers, 2015) was tested; but in many cases, CCA did not yield perfectly 212 

linearly correlated relationships with Gaussian prior distributions, two necessary conditions to 213 

apply Gaussian regression. We thus implement KDE for its robustness to estimate posterior 214 

distribution in a large variety of situations. KDE computes, for a given location in space, the 215 

sum of the contribution of each point from the CCA space. We use a multi-Gaussian kernel 216 

centered on the points with bandwidths chosen accordingly to the point density (see subsection 217 

5.2). The resulting distributions in the CCA model space are not constrained to any given 218 

distribution of known shape. The process is illustrated in the center of Figure 1. 219 

2.5. Step 5: sampling of the constituted distributions 220 

The posterior distribution is not constrained to a known distribution. Therefore, 221 

sampling is done through the inverse transform sampling method (Devroye, 1986). This 222 

sampling procedure benefits from the properties of the cumulative distribution function that 223 
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links a uniformly distributed variable to any distribution. The sampler thus transforms a value 224 

sampled in a uniform distribution to the corresponding value in the original distribution via the 225 

inverse of the cumulative distribution function. We can now easily generate a set of samples 226 

from the posterior distributions in the reduced space: 227 

 𝒎𝒑𝒐𝒔𝒕
𝒄 ∈ 𝑓𝐻(𝒎𝒄|𝒅𝒐𝒃𝒔

𝒄 ) (4) 

2.6. Step 6: back-transformation of the samples into original space 228 

The set of samples in CCA model space can be back-transformed into the original model 229 

space, using the inverse of the 𝑩 matrix (𝑞 × 𝑞). We thus have the posterior in the original 230 

physical space: 231 

 𝒎𝒑𝒐𝒔𝒕 = 𝒎𝒑𝒐𝒔𝒕
𝒇

= 𝑩−𝟏𝒎𝒑𝒐𝒔𝒕
𝒄  (5) 

Here, in the SNMR context, since the model space was not reduced using principle 232 

component analysis, the models in PCA space are the same as the ones in original space. 233 

Because Gaussian regression or KDE with Gaussian kernel has no limit on the value of sampled 234 

parameters, a few samples might occasionally be located outside the prior model space, in 235 

particular when the model is at the extremity of the prior. Those models are removed from the 236 

sampled space as they do not correspond to the definition of the problem. 237 

2.7. Noise propagation in BEL1D 238 

In order to investigate the effect of noise on BEL1D, one can analyze the variation of 239 

the PCA scores to the estimated field noise level (if the latter can be estimated). If the scores of 240 

the first 𝑘 components are not varying in a significant way, then, one can assume that noise has 241 

no impact on the imaging process. On the other hand, if the noise impacts the scores 242 

significantly, BEL1D considers this impact by propagating uncertainty (represented by 𝐶𝑓 in 243 

Equation 6) on the reduced observed data in the canonically correlated space, leading 244 

potentially to more complex computation of the posterior distributions (Hermans et al., 2016). 245 
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This uncertainty is propagated in the CCA dimension according to linear error propagation from 246 

equation (2):  247 

 𝐶𝑐 = 𝐴𝐶𝑓𝐴𝑇 (6) 

To estimate 𝐶𝑓, we explore the PCA scores and their modifications when noise is 248 

present in the dataset. To do so, we take the data associated to each of the prior realizations as 249 

a basis and compute the PCA scores when one model is perturbed with a noise level similar to 250 

the data. The operation is repeated for a significant sub-sample (in the latter example, we used 251 

50 randomly selected models) of the prior samples allowing to derive the PCA score covariance 252 

matrix 𝐶𝑓. 253 

Contrary to Gaussian regression where the addition of covariance to the observed 254 

reduced data only slightly increases the complexity of the formula for the sampling parameters 255 

(Hermans et al., 2016), the addition of uncertainty on the reduced observed data highly hinders 256 

performances of the Kernel density estimation. Assigning uncertainty to the observed data (X in 257 

Figure 2) requires the computation of the kernel density estimation of the reduced posterior 258 

distributions for multiple sets of randomly sampled 𝑑𝑜𝑏𝑠
𝑐 + 𝜖, then processing to sampling and 259 

back transformation from those sets of distributions to constitute models of the posterior 260 

distributions. This can be avoided by enlarging the bandwidth of the kernel density estimator 261 

(Bowman and Azzalini, 1997) in the X direction (in the CCA data space) according to 𝐶𝑐. This 262 

accounts for the uncertainty on the exact position of the data in the reduced space and therefore 263 

account for noise, without adding complexity to the computations, as is shown in Figure 2. 264 
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 265 

Figure 2 : Example of the effect of noise on the computation of the kernel density estimator for the probability 266 

density functions. On the left, a random dataset that is highly correlated and the associated true value of X. On 267 

the right, the estimated distributions for the values of Y constrained to the known value of X and its associated 268 

error of 1. The computation time t is given for the different cases. 269 

3. Numerical example  270 

In this section we will present results obtained by applying BEL1D to numerical 271 

examples of SNMR. The model that we will use corresponds to a classical context with two 272 

layers: a first unsaturated layer and a saturated half-space (Table 1). A more complex case is 273 

presented in section 4, and a non-geophysical related inverse problem is presented in 274 

supplementary material (“Testing BEL1D on a synthetic mind experiment: oscillations of a 275 

pendulum”). 276 

 Thickness (m) Water content (%) Relaxation time (ms) 

Layer 1 5 5 100 

Half-space / 25 200 

Table 1: Characteristics of the synthetic model 277 

3.1. Computation of the model space and data space 278 

The data are simulated for SNMR using the MRSMatlab toolbox (Müller-Petke et al., 279 

2016). For the simulated experiment, the circular transmitter is the same as the receiver (the 280 
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loops have a 50 m diameter with 2 turns). To simplify the computations, the earth is set as 281 

resistive, neglecting the effect of electrical conductivity in signal attenuation and phase shift. 282 

Therefore, the signal is purely real. However, the process presented in this paper is not limited 283 

to real-valued data. SNMR is known to be impacted significantly by electromagnetic (EM) 284 

noise (e.g., Behroozmand et al., 2016). Different types of EM noise can affect the SNMR data. 285 

However, when most of these components have been filtered out, the SNMR signal will remain 286 

contaminated by a Gaussian noise distribution, whose magnitude cannot be reduced further. To 287 

represent this, we chose to add a Gaussian noise level to the dataset, corresponding to a mean 288 

signal-to-noise ratio of 10 (35 nV), which is a relatively high value in usual SNMR surveys. 289 

 290 

Figure 3 : Simulated data for the SNMR experiment. The black curves represent the noisy dataset and the red 291 

curves the noise-free one. 292 

As can be observed in Figure 3, the initial amplitude of the signal is around 500 nV, and 293 

signal-to-noise ratio of 10 produces quite noisy signals, but the decaying behavior remains 294 

observable. 295 

The prior model space reflects the prior knowledge of the study site. In our case, we will 296 

assume that it is known that the subsurface is composed of one layer resting over an infinite 297 
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half-space. Then, the rest of the properties will be defined as uniformly distributed variables 298 

varying in the intervals described in Table 2. The prior intervals are not necessarily centered on 299 

the actual value of the parameter. This is to better simulate real situations, where the user will 300 

only have rough information about the subsurface constitution. 5000 prior realizations are 301 

generated using a Latin-hypercube sampler (McKay et al., 1979). The forward model that was 302 

used to simulate the test data is reused here to generate the synthetic data set. 303 

 304 

 Thickness [m] Water content [%] Relaxation time [ms] 

Minimum Maximum Minimum Maximum Minimum Maximum 

Layer 1 2.5 7.5 3.5 10 5 350 

Half-space / / 10 30 5 350 

Table 2: Prior model space for the SNMR experiment 305 

3.2. Global sensitivity analysis and dimension reduction 306 

We performed a distance-based global sensitivity analysis (Park et al., 2016) whose 307 

results are presented in Figure 4 (Left). The parameters corresponding to the first layer (𝑊1 308 
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and 𝑇2,1
∗ ) are not sensitive to the SNMR signal in this specific experimental configuration and 309 

should therefore lead to a poorly reduced uncertainty on those parameters. 310 

 311 

Figure 4 : Left: multivariate sensitivity analysis performed on the simulated data (the red bars correspond to 312 

parameters that have an effect on the data and the blue ones to parameters that have a negligible effect). Right: 313 

combinations of parameters representing the canonically correlated model space dimensions (the values are 314 

scaled for visual purposes) 315 

 316 

Figure 5 : SNMR - Data space versus model space in the canonically correlated space. The blue dots represent 317 

the prior models and data spaces and the orange line represents the exact value of the test data in the reduced 318 

space. 319 
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From the initial 11.904 dimensions in the dataspace, PCA enabled a reduction to only 5 320 

dimensions, while managing to keep more than 90% of the variability. The canonical 321 

correlation analysis is shown in Figure 5. It is observed that (1) the correlation between the 322 

models and the data is larger for the first 3 CCA dimensions, (2) the correlation is not linear 323 

from the 2nd dimension and (3) from the 4th dimension, the points are scattered and not 324 

correlated. The fact that the last dimensions are scattered (note that each dimension is a linear 325 

combination of the model parameters) informs us on the inability of the data to efficiently 326 

predict all the parameters simultaneously. This is confirmed by the linear combinations that 327 

constitute the CCA model space dimensions (Figure 4, Right): we observe that the three last 328 

reduced dimensions are mainly linear combinations of the insensitive values (Figure 4, Left). 329 

Note that non-linear statistical techniques (e.g., Gorban et al., 2008; Lawrence, 2012) could 330 

potentially lead to better characterization of the data-model relationship.  331 
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3.3 Results of BEL1D on the numerical example 332 

 333 

Figure 6 : Results of the BEL1D process on the synthetic noise-free data from the 2 layers model. The obtained 334 

distributions are the posterior distributions estimated from the noisy dataset in red. The sampled prior model 335 

space is represented by the blue distributions. The test values are represented with dashed red lines in the 336 

histogram plots. Results of the McMC algorithm DREAM are presented in yellow. 337 

BEL1D is applied to the simulated noisy dataset. Figure 6 shows the prior and posterior 338 

distributions of parameters obtained through BEL1D. We observe that the uncertainty on the 339 

half-space parameters is dramatically reduced through BEL1D. On the other hand, the 340 

insensitive parameters 𝑇2,1
∗  and 𝑊1 are poorly reduced. This insensitivity to some of the 341 

parameters is also clearly identified in the pendulum example (Supplementary Material). As 342 
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can be observed, the test value of the parameter is always contained in the posterior distribution. 343 

The multivariate analysis of the parameters shows that most of the parameters are independent. 344 

However, some correlations are observed for parameters that are related to the same layer (𝑇2,2
∗  345 

and 𝑊2 for example). Figure 7 (Left) presents another representation of the posterior results, 346 

where the data RMS of posterior samples are color-coded, and where each model is a set of 347 

linked parameters. The presented results show that a large part of the posterior models has a 348 

very low RMS error. The trend in the water content set through the prior model space is 349 

respected. In contrast, the trend for the relaxation time is not resolved by BEL1D. The analysis 350 

of the RMS and the comparison with DREAM (Figure 7, Right) shows that is related to the 351 

insensitivity of the data and not to the method itself. 352 

 353 

Figure 7 : Left: results of the BEL1D process on the synthetic noisy data from the 2 layers model. Each 354 

displayed model is presented with its associated RMS error value. In order to enhance visualisation, each colour 355 

is associated to the same number of models. The dashed white lines represent the test values and the dashed 356 

black lines represent the extent of the prior model space. The similar graph is also presented for DREAM results 357 

(Right). 358 

Finally, we applied the DREAM McMC algorithm (Vrugt, 2016) to the same dataset. 359 

We applied a Gaussian likelihood with 15 generations and 10000 chains and a burn-in period 360 

of 5000 chains. However, to achieve convergence towards reasonable uncertainties, changes to 361 

the definition of the dataset are required. We had to use gate integration, similarly to what is 362 
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applied in MRSMatlab (Müller-Petke et al., 2016) in order to attribute higher loads to the first 363 

part of the decay curves, thus lowering the impact of noise on the estimation. For the presented 364 

results, we use 5 gates for each pulse moment. However, we must note that the results of 365 

DREAM are highly sensitive to the number of gates: with 1 or 2 gates, nearly no reduction of 366 

uncertainty is observed, whereas with a too large number of gates (to the limit with no gate 367 

integration) false posterior distributions are observed (the test values are outside of the predicted 368 

posterior). The results are presented alongside the BEL1D results in Figure 6. They show that 369 

BEL1D tends to have a slightly lower performance than DREAM. This is related to the 370 

approximation of the problem in a lower dimension space where the actual data misfit is never 371 

computed. Applying a cutoff on the RMS values observed in BEL1D would result in the same 372 

distribution (Figure 7).  373 

 374 

Figure 8 : Impact of noise on the PCA scores (the first 5, kept after dimensionality reduction), covariance matrix 375 

for the PCA scores impacted by noise (left) and the corresponding covariance in CCA space (right). This first 376 

matrix is estimated through the mean of the covariance matrices observed between the noise-free scores and the 377 

noisy ones. 378 

To estimate the posterior distributions, we needed to account for the impact of noise in 379 

the process. The matrix 𝐶𝑓 presented in Figure 8 shows very low values for the covariance. 380 

However, once transformed into CCA space (𝐶𝑐, Equation 6), we observe that the effect of 381 
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noise, even if limited, is still observable. From a default bandwidth of 0.01 in the X direction 382 

for the kernel density estimation, we computed bandwidths ranging from 0.017 to 0.059. 383 

Those increased bandwidths explain the presence of some outliers in the dataspace 384 

(Figure 7, LeftErreur ! Source du renvoi introuvable.). When observing the CCA space 385 

(Figure 5), it is noticeable that the second dimension (mainly representing the decay time of the 386 

second layer) shows models that are outside the main distribution but close to the position of 387 

the reduced test data. When using the bandwidth that takes into account the impact of noise, 388 

those models are englobed into the posterior. Nonetheless, those models correspond to large 389 

RMS error and are easily identified (Figure 7). 390 

An example with more than two layers is presented in supplementary material 391 

(“Application of BEL1D to a four-layer model”). 392 

4. Case study: Mont Rigi (Belgium) 393 

The Mont Rigi is located in the Belgian Fagnes region, in the Eastern part of the country. 394 

This site presents an ideal case study for SNMR as it is remote and far from any electromagnetic 395 

noise sources, due to its natural reserve classification. 396 

Geologically, the site is characterized by a metric peat layer on top of a Cambrian 397 

bedrock (La Venne formation) known as an aquiclude with a very low water content (Gilson et 398 

al., 2017). In contrast, peat is known to present very high water contents with observed total 399 

porosities around 90% (Wastiaux, 2008). According to previous GPR exploration (Wastiaux 400 

and Schumacker, 2003), the peat layer at the experimental site should have a thickness between 401 

2.5 and 4.5 meters. The SNMR response should therefore allow to easily distinguish the two 402 

layers with a properly designed experiment. The designed on-site experiment consisted of a 403 

classical coincident loops transmitter/receiver couple with a diameter of 20 meters. 404 
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The raw data have been preprocessed to lower the impact of noise with despiking, 405 

harmonic modelling, reference noise cancellation and despiking again (Müller-Petke et al., 406 

2016). The signals have been further truncated to 0.2 seconds to decrease the impact of noise, 407 

mostly present at large timeframes. The resulting noise amplitude is quite low for SNMR (18 408 

nV). Then, the signals have been inverted using the QT Inversion (Müller-Petke and Yaramanci, 409 

2010), to constitute a benchmark to compare to the results of BEL1D. We used a smooth-mono 410 

model description (smooth models with a single relaxation time for a given depth) and a 411 

regularization parameter of 6000 for both water content and relaxation time using the L-curve 412 

criteria (Aster et al., 2013). Then, BEL1D was applied with the uniformly distributed prior 413 

model space described in Table 3. We sampled 5000 prior realizations and produced 5000 414 

models for the posterior. 415 

 Thickness [m] Water content [%] Relaxation time [ms] 

Minimum Maximum Minimum Maximum Minimum Maximum 

Layer 1 0 7.5 30 80 0 200 

Layer 2 / / 0 15 100 400 

Table 3: Prior model space for the Mont Rigi SNMR experiment 416 

The CCA space analysis (Figure 9) shows that we could expect a significant reduction 417 

of uncertainty for some parameters, as the first three dimensions show high correlations. The 418 

first dimension, dominated by the water content of the half-space shows an especially narrow 419 

relationship between the reduced data and model space. On the other hand, the last dimension, 420 

mostly represented by the water content of the first layer, shows no specific correlation. We 421 

should therefore expect a much better reduction for the parameters of the half-space than for 422 

the first layer. 423 
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 424 

Figure 9: Mont Rigi – Data versus model space in the CCA space. The blue dots represent each prior 425 

realizations and the orange line the position of the field data. 426 

The noise level (after denoising) impact on BEL1D was assessed and resulted in 427 

significant changes in bandwidths for the kernel density estimation, between 0.04 and 0.12 428 

instead of the default 0.01 value. 429 
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 430 

Figure 10 : SNMR at Mont Rigi - Prior (blue) and posterior (orange) distributions of the parameters. 431 

The analysis of the posterior parameters model space (Figure 10) shows that the 432 

reduction of uncertainty from the prior model space to the posterior is significant and produces 433 

consistent results, when compared to the geological context and the QT inversion solution 434 

(dashed gray lines in Figure 11). The thickness of the peat layer tends to be smaller than the 435 

maximum estimate (4.5 m) from to the GPR interpretation (Wastiaux and Schumacker, 2003). 436 

The use of a narrower prior taking into account the GPR information would prevent such a 437 

behavior. This is illustrated by the decrease of the maximum value of the thickness for the first 438 
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layer when the water content of the aforementioned layer increases. This behavior arises from 439 

the non-uniqueness of the SNMR response stated above. 440 

In the posterior models produced by BEL1D (Figure 11), a large majority shows a root 441 

mean square error lower than the noise level in the dataset, implying that the set of probable 442 

models provides an efficient estimation of the site parameters. The RMS errors of the posterior 443 

samples show that they all explain the data to a similar level; the uncertainty is thus intrinsic to 444 

the data set and the non-unicity of the solution. The non-uniqueness of the solution is easily 445 

observable, with two distinct behaviors: one with a median water content and a thick first layer 446 

and another with a very high water content but a thinner first layer. Those two cases show 447 

similar RMS errors, hence are explaining the data at the same level. The probability of each 448 

posterior model is shown in the RMS error colorbar for which each color represents the same 449 

number of models. Therefore, it is observed that the low RMS error models also correspond 450 

with the most probable ones. 451 

 452 

Figure 11: SNMR at Mont Rigi - Posterior models distributions with their associated misfit and results of the QT 453 

inversion (dashed gray line). The black line in the RMS error graph represents the level of noise in the original 454 

dataset. 455 
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5. Discussion 456 

5.1. Impact of the number of sampled models in the prior model space 457 

The optimum number of models in the prior model space sample is a tradeoff between 458 

precision of the posterior models distributions and ease of computation: the larger the number 459 

of samples, the larger the memory requirement and the harder the computations. We ran BEL1D 460 

on the previous synthetic SNMR dataset with 10, 50, 100, 500, 1000, 5000, 10 000, 50 000 and 461 

100 000 models in the prior samples. For each case, we ran BEL1D 10 times and aggregate the 462 

results. It is observed that the RMS error distribution tends to stabilize above 1000 models, 463 

suggesting that this value is optimal in our case (Figure 12), especially for the minimum and 5th 464 

percentile values. This observation is confirmed by the evolution of the parameter distribution 465 

characteristics (Figure 12). In those graphs, the mean values of the parameters are normalized 466 

with the test values, and the standard deviations are normalized with the standard deviation in 467 

the prior model space. We see that the parameter distributions are stabilized above 1000 models, 468 

even if the values are not minimal. 469 
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 470 

Figure 12 : Impact of the number of prior samples on the posterior distribution. The top graph presents RMS 471 

evolution, while the two bottom graphs show (from left to right) the normalized mean value and the normalized 472 

standard deviation. 473 

5.2. Impact of the chosen kernel density bandwidth on the posterior distributions 474 

To assess the impact of the kernel density bandwidth on the posterior distribution, we 475 

ran 10 times 10 different values ranging from 10-5 and 1. In each case, 5000 models were 476 

sampled in the prior (Latin-hypercube sampler) and 5000 models were predicted, to ensure that 477 

no side effect is linked to other parameters. A similar analysis to the one performed in the 478 

previous subsection is then performed (Figure 13). 479 

We observe that the bandwidth has a strong impact on the resulting distributions. Too 480 

low values result in erratic behaviors of the posterior distributions. On the other end, too large 481 

bandwidths result in the smoothing of the posterior distributions, as is observed in the evolution 482 
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of the standard deviation where this value increases sharply for the sensitive parameters. 483 

Therefore, the optimal bandwidth is a value located in-between the two extremes, where the 484 

reduction of uncertainty is significant for the sensitive parameters and the other parameters are 485 

stable. This occurs around 10-2 in our case.  486 

In our implementation of the kernel density estimator, the effect of a too small 487 

bandwidth is avoided by verifying that enough points (at least 1% of the sampled prior) are 488 

present in the direct surrounding of the reduced data (𝒅𝒐𝒃𝒔
𝒄 ± 3 × 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ). To perform the 489 

test presented in this bandwidth analysis, this safeguarding measure was disabled. In the case 490 

the default bandwidth is too small, then, the bandwidth is multiplied by 2 and the verification 491 

is made again until the criterion is satisfied and only then, the kernel density estimation is 492 

performed. We ran BEL1D with a bandwidth set to 10-5 and the safeguard algorithm enabled. 493 

The obtained result is here similar to the one obtained with a suitable bandwidth as is shown by 494 

the diamonds in the graph presenting the evolution of the normalized standard deviation in 495 

Figure 13. 496 
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 497 

Figure 13 : Impact of the bandwidth in the kernel density estimation on the posterior distribution. The top graph 498 

presents RMS evolution, while the two bottom graphs show (from left to right) the normalized mean value and 499 

the normalized standard deviation. This latter also presents results obtained with the safeguarding measure 500 

enabled (diamonds) for the most extreme case: a bandwidth of 1E-5. 501 

6. Conclusion 502 

We propose an adaptation of the Bayesian Evidential Learning framework as a new tool 503 

for the unidimensional interpretation of geophysical data called BEL1D. This approach offers 504 

an alternative to stochastic inversions, as it requires fewer and simpler computations, thus 505 

lowering the CPU cost. This approach is also presented as an alternative to deterministic 506 

inversions as its behavior is superior both in terms of ease of implementation and completeness 507 

of the results (handling properly non-uniqueness, quantifying the uncertainty, etc.). We 508 

therefore developed this method theoretically, as a new general algorithm. 509 
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The framework does not require the use of regularization parameters or any other form 510 

of bias, but rather requires the proper definition of the prior model space. Contrary to other 511 

Bayesian methods, the use of a large prior model space (hence, introducing less bias in the 512 

posterior information) does not involve heavier computations to converge as the algorithm is 513 

always building in one step the posterior model space that corresponds to the observed data 514 

(see, 2.4 Step 4: generation of posterior distributions for the model parameters in CCA space 515 

using kernel density estimators). This method can therefore be considered unbiased if the prior 516 

model space is sufficiently large. BEL1D is thus a computationally efficient alternative to 517 

stochastic inversions as it only requires n forward models corresponding to the prior samples. 518 

Moreover, in BEL1D noise is considered via an imbedded theoretically based method, contrary 519 

to classically used high regularization parameters that lack of theoretical basis to be properly 520 

assessed and are therefore difficult to estimate. 521 

When compared to McMC methods (such as DREAM), one of the key advantages of 522 

BEL1D is the tractability of all operations. When McMC classically applies random changes to 523 

the models and select them randomly, BEL1D constitutes a correlation between models 524 

parameters and the data. This means that one could seek for the origin of all the posterior models 525 

in the prior model space. This latter enables, for example, to efficiently sample multi-modal 526 

distribution or to understand the origin of odd models in the posterior distribution (see the 527 

numerical example), impossible to track back in McMC algorithms. The other key advantage 528 

is the simpler tuning to convergence of BEL1D compared to DREAM (McMC). In DREAM, 529 

it was required to change the dataspace to enable convergence towards reasonable (or even 530 

correct) posterior distributions. In BEL1D, as long as the prior is correctly assumed, the only 531 

parameter that the user needs to take care of is the number of models to sample in this space. 532 

As shown in the discussion, this parameter can be selected by observing the stabilization of the 533 

posterior distributions. In DREAM, the application without changes in the dataset 534 
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representation lead to either nearly no reduction of uncertainty (using the RMS as a proxy of 535 

the probability) or to a reduction towards level of uncertainty close to deterministic values but 536 

without the true model inside the posterior (using all data points as proxy of the probability). 537 

Therefore, applying this method to an unknown dataset might lead to erroneous interpretations, 538 

whereas BEL1D, even if producing slightly larger uncertainties should always predict 539 

consistent posterior spaces. 540 

We demonstrated that BEL1D is efficient for the interpretation of SNMR data. We 541 

presented results for noisy datasets originating from a numerical model and field. In both cases, 542 

we validate the results from BEL1D, either against the test values from the model and McMC 543 

methods – DREAM (Vrugt, 2016) – for the numerical example or other geophysical 544 

experiments and classical state-of-the art inversion technics for the field case. On the other end, 545 

the careful analysis of the RMS error of the proposed models indicates that the range of 546 

uncertainty delivered by BEL1D is intrinsic to the non-unicity of the solution for geophysical 547 

inverse problems: many models explain the data to the same level. 548 

In term of performance, the computation cost of BEL1D is directly proportional to the 549 

efficiency of the forward model and the number of samples in the prior model space. It must be 550 

noted that the prior samples being independent, the simulation of synthetic data can be fully 551 

parallelized. The performance of BEL1D can thus be easily estimated from the available 552 

computing facilities. The cost is therefore much smaller than other stochastic methods requiring 553 

ten to hundreds thousands of runs to converge towards a solution. Moreover, computation 554 

timing could be dramatically reduced by pre-field forward modelling operations for large 555 

geophysical campaigns where the prior would be similar. Prior realizations and the associated 556 

datasets would then be reused (PCA and CCA operations also), letting only the kernel density 557 

estimation, sampling and back-transformation operations to be applied after field acquisition, 558 
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leading to extremely rapid imaging. This is an extreme advantage compared to other stochastic 559 

methods that rely on the data misfit (such as McMC) to sample the posterior. 560 

This application, along with the pendulum case presented in supplementary material, 561 

demonstrate the versatility of BEL1D and its applicability to multiple cases with very few 562 

adaptations. Provided that a forward model already exists, the adaptation of the codes to any 563 

other 1D geophysical method would be straightforward. For example, the forward operator 564 

from HV-Inv (García-Jerez et al., 2016) could be used for the interpretation of H/V data. System 565 

calls may also help further extend the applicability of BEL1D. This may be the case for the use 566 

of all the 1D forward operators implemented in pyGIMLi (Rücker et al., 2017) – vertical 567 

electrical sounding, frequency- and time-domain electromagnetic and magnetotelluric. 568 

In its present version, BEL1D is dedicated to the 1D inversion of geophysical data in 569 

layered Earth model where the contrast between layers is supposed to be sharp. In the future, 570 

we plan to extend the method to smoothly varying systems accounting for a large number of 571 

thin, correlated layers. 572 
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standalone (no specific toolbox required) in MATLAB but can run faster when the Parallel 582 

Computing toolbox is available. 583 

The main codes have been developed by H. Michel (ULiège, Belgium): 584 

Hadrien MICHEL 585 

Urban and Environmental Engineering Department 586 

Allée de la découverte, 9 587 

B-4000 Liège 588 

Belgium 589 

The forward models that is used is an Open Source MATLAB toolboxes for SNMR 590 

(MRSMatlab: Müller-Petke et al., 2016). 591 

In order to run the codes, a MATLAB license is required. Minimum requirements for 592 

the computations are the ones for your MATLAB license, at the exception of RAM, for which 593 

a minimum of 8 Go is recommended and more could be required for more complex 594 

computations. If using the parallel capabilities of MATLAB (parallel computing toolbox), a 595 

large number of cores is preferred and, globally, a 4-core (or more) processor is advised. 596 
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