Roberfroid M. Prebiotics: the concept revisited. J Nutr. 2007;137(3 Suppl2):830S-7S.
Regassa A, Nyachoti CM. Application of resistant starch in swine and poultry diets with particular reference to gut health and function. Anim Nutr. 2018;4(3):305-10.
Haenen D, Zhang J, Souza da Silva C, Bosh G, van der Meer IM, van Arkel J, van den Borne JJ, Pérez Gutiérrez O, Smidt H, Kemp B, Müller M, Hooiveld GJ. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression. J Nutr. 2013;143(3):274-83.
Metzler-Zebeli BU, Newman MA, Grüll D, Zebeli Q. Consumption of transglycosylated starch down-regulated expression of mucosal innate immune response genes in the large intestine using a pig model. Br J Nutr. 2018;119(12):1366-77.
Haenen D, Souza da Silva C, Zhang J, Koopmans SJ, Bosch G, Vervoort J, Gerrits WJ, Kemp B, Smidt H, Müller M, Hooiveld GJ. Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in the proximal colon of male pigs. J Nutr. 2013;143(12):1889-98.
Fan MZ, Archbold T, Lackeyram D, Liu Q, Mine Y, Paliyath G. Consumption of guar gum and retrograded high-amylose corn resistant starch increases IL-10 abundance without affecting pro-inflammatory cytokines in the colon of pigs fed a high-fat diet. J Anim Sci. 2012;90(Suppl 4):278-80.
Rideout TC, Harding SV, Raslawsky A, Rempel CB. Dietary resistant starch supplementation increases high-density lipoprotein particle number in pigs fed a western diet. J Diet Suppl. 2017;14(3):334-45.
Newman MA, Petri RM, Grüll D, Zebeli Q, Metzler-Zebeli BU. Transglycosylated starch modulates the gut microbiome and expression of genes related to lipid synthesis in liver and adipose tissue of pigs. Front Microbiol. 2018;9:224.
Mohamed AB, Rémond D, Chambon C, Sayd T, Hébraud M, Capel F, Cohade B, Hafnaoui N, Béchet DE, Coudy-Gandilhon C, Migné C, David J, Dardevet D, Doré J, Polakof S, Savary-Auzeloux I. A mix of dietary fermentable fibers improves handling by the liver of overfed minipigs. J Nutr Biochem. 2019;65:72-82.
Lallès JP. Long term effects of pre- and early postnatal nutrition and environment on the gut. J Anim Sci. 2012;90(Suppl 4):421-9.
Le Bourgot C, Le Normand L, Formal M, Respondek F, Blat S, Apper E, Ferret-Bernard S, Le Huërou-Luron I. Maternal short-chain fructo-oligosaccharide supplementation increases intestinal cytokine secretion, goblet cell number, butyrate concentration and Lawsonia intracellularis humoral vaccine response in weaned pigs. Br J Nutr. 2017;117(1):83-92.
Gabler NK, Spencer JD, Webel DM, Spurlock ME. In utero and postnatal exposure to long chain (n-3) PUFA enhances intestinal glucose absorption and energy stores in weanling piglets. J Nutr. 2007;137(11):2351-8.
Cheng C, Wei H, Xu C, Xie X, Jiang S, Peng J. Maternal soluble fiber diet during pregnancy changes the intestinal microbiota, improves growth performance and reduces intestinal permeability in piglets. Appl Environ Microbiol. 2018;84(17):e01047-18.
Paul HA, Bomhof MR, Vogel HJ, Reimer RA. Diet-induced changes in maternal gut microbiota and metabolomics profiles influence programming of offspring obesity risk in rats. Sci Rep. 2016;6:20683.
Hsu CN, Lin YJ, Hou CY, Tain YL. Maternal administration of probiotic or prebiotic prevents male adult rat offspring against developmental programmng of hypertension induced by high fructose consumption in pregnancy and lactation. Nutrients. 2018;10(9):1229.
Leblois J, Massart S, Soyeurt H, Grelet C, Dehareng F, Schroyen M, Li B, Wavreille J, Bindelle J, Everaert N. Feeding sows resistant starch during gestation and lactation impacts their faecal microbiota and milk composition but shows limited effects on their progeny. PLoS One. 2018;13(7):e0199568.
Bindels LB, Segura Munoz RR, Gomes-Neto JC, Mutemberezi V, Martinez I, Salazar N, Cody EA, Quintero-Villegas MI, Kittana H, de Los Reyes-Gavilán CG, Schmaltz RJ, Muccioli GG, Walter J, Ramer-Tait AE. Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome. 2017;5(1):12.
Bronkowska M, Orzeł D, Łoźna K, Styczyńska M, Biernat J, Gryskin A, Zieba T, Kapelko M. Effect of resistant starch RS4 added to the high-fat diets on selected biochemical parameters in Wistar rats. Rocz Panstw Zakl Hig. 2013;64(1):19-24.
Zhang M, Yang X. Effets of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J Gastroenterol. 2016;22(40):8905-9.
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-45.
Vos AP, M'Rabet L, Stahl B, Boehm G, Garssen J. Immune-modulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit Rev Immunol. 2007;27(2):97-140.
Trachsel J, Briggs C, Gabler NK, Allen HK, Loving CL. Dietary resistant potato starch alters intestinal microbial communities and their metabolites, and markers of immune regulation and barrier function in swine. Front Immunol. 2019;10:1381.
Yan H, Lu H, Almeida VV, Ward MG, Adeola O, Nakatsu CH, Ajuwon KM. Effects of dietary resistant starch content on metabolic status, milk composition, and microbial profiling in lactating sows and on offspring performance. J Anim Physiol Anim Nutr. 2017;1010(1):190-200.
Feyera T, Højgaard CK, Vinther J, Bruun TS, Theil PK. Dietary supplement rich in fiber fed to late gestating sows during transition reduces rate of stillborn piglets. J Anim Sci. 2017;95(12):5430-8.
Xie C, Guo X, Long C, Fan Z, Xiao D, Ruan Z, Deng ZY, Wu X, Yin Y. Supplementation of the sow diet with chitosan oligosaccharide during late gestation and lactation affects hepatics gluconeogenesis of suckling piglets. Anim Reprod Sci. 2015;159:109-17.
Arnal ME, Zhang J, Erridge C, Smidt H, Lallès JP. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentration of alkaline phosphatase and TLR-stimulants in swine offspring. PLoS One. 2015;10(2):e0118092.
Le Bourgot C, Ferret-Bernard S, Le Normand L, Savary G, Menendez-Aparicio E, Blat S, Appert-Bossard E, Respondek F, Le Huërou-Luron I. Maternal short-chain fructooligosaccharide supplementation influences intestinal immune system maturation in piglets. PLoS One. 2014;9(9):e107508.
Nielsen TS, Theil PK, Purup S, Nørskov NP, Back Knudsen KE. Effects of resistant starch and arabinoxylan on parameters related to large intestinal and metabolic health in pigs fed fat-rich diets. J Agric Food Chem. 2015;63(48):10418-30.
Sun Y, Yu K, Zhou L, Fang L, Su Y, Zhu W. Metabolomic and transcriptomic responses induced in the livers of pigs by the long-term intake of resistant starch. J Anim Sci. 2016;94(3):1083-94.
Wang C, Tao Q, Wang X, Wang X, Zhang X. Impact of high-fat diet on liver genes expression profiles in mice model of nonalcoholic fatty liver disease. Environ Toxicol Pharmacol. 2016;45:52-62.
Christoffersen B, Straarup EM, Lykkegaard K, Fels JJ, Sass-Ørum K, Zhang X, Raun K, Andersen B. FGF21 decreases food intake and body weight in obese Gôttingen minipigs. Diabetes Obes Metab. 2018;21(3):592-600.
Wang Y, Liu X, Hou L, Wu W, Zhao S, Xiong Y. Fibroblast growth factor 21 surppresses adipogenesis in pig intramuscular fat cells. Int J Mol Sci. 2015;17(1):11.
Hui Q, Huang Z, Pang S, Yang X, Li J, Yu B, Tang L, Li X, Wang X. Two-hundred-liter scale fermentation, purification of recombinant human fibroblast growth factor-21, and its anti-diabetic effects on Ob/Ob mice. Appl Microbiol Biotechnol. 2018;103(2):719-30.
Li H, Wu G, Fang Q, Zhang M, Hui X, Sheng B, Wu L, Bao Y, Li P, Xu A, Jia W. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat. Nat Commun. 2018;9(1):272.
Kamalam BS, Panserat S, Aguirre P, Geurden I, Fontagné-Dicharry S, Médale F. Selection for high muscle fat in rainbox trout induces potentially higher chylomicron synthesis and PUFA biosynthesis in the intestine. Comp Biochem Physiol A Mol Integr Physiol. 2013;164(2):417-27.
Cruciani-Guglielmacci C, Bellini L, Denom J, Oshima M, Fernandez N, Normandie-Levi P, Berney XP, Kassis N, Rouch C, Dairou J, Gorman T, Smith DM, Marley A, Liechti R, Kuznetsov D, Wigger L, Burdet F, Lefèvre AL, Wehrle I, Uphues I, Hildebrandt T, Rust W, Bernard C, Ktorza A, Rutter GA, Scharfmann R, Xenarios I, Le Stunff H, Thorens B, Magnan C, Ibberson M. Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for Elovl2 in glucose-induced insulin secretion. Mol Metab. 2017;6(4):340-51.
Kralisch S, Hoffmann A, Lössner U, Kratzsch J, Blüher M, Stumvoll M, Fasshauer M, Ebert T. Regulation of the novel adipokines/hepatokines fetuin a and fetuin B in gestational diabetes mellitus. Metabolism. 2017;68:88-94.
Li Z, Liu C, Shi X, Chen Z, Wang D, Li L, Tu Y, Lin M, Liu S, Yang S, Li X. Common genetic variants in the FETUB locus, genetically predicted fetuin-B levels, and risk of insulin resistance in obese Chinese adults. Medicine (Baltimore). 2017;96(50):e9234.
Wang H, Hays NP, Das SK, Craig RL, Chu WS, Sharma N, Elbein SC. Phenotypic and molecular evaluation of a chromosome 1q region with linkage and association to type 2 diabetes in humans. J Clin Endocrinol Metab. 2009;94(4):1401-8.
Borbàs T, Benko B, Dalmadi B, Szabó I, Tihanyi K. Insulin in Flavin-containing monooxygenase regulation. Flavin-containing monooxygenase and cytochrome P450 activities in experimental diabetes. Eur J Pharm Sci. 2006;28(1-2):51-8.
Gaur P, Cebula M, Riehn M, Hillebrand U, Hauser H, Wirth D. Diet induced obesity has an influence on intrahepatic T cell responses. Metabolism. 2017;69:171-6.
He B, Wu L, Xie W, Shao Y, Jiang J, Zhao Z, Yan M, Chen Z, Cui D. The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice. BMC Immunol. 2017;18(1):33.
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499-502.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.
Andrew S. FastQC: a quality control tool for high throughput sequence data. UK: Babraham Institute; 2010. [updated 2018 October 4; cited 2019 March 1]. Available from http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Untergrasser A, Cutcutache I, Koressaar T, Ye T, Faircloth BC, Remm M, Rozen SG. Primer3 - new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.
Rosenbaum S, Ringseis R, Most E, Hillen S, Becker S, Erhardt G, Reiner G, Eder K. Genes involved in carnitine synthesis and carnitine uptake are up-regulated in the liver of sows during lactation. Acta Vet Scand. 2013;55:24.
Chatelais L, Jamin A, Gras-Le Guen C, Lallès JP, Le Huërou-Luron I, Boudry G. The level of protein in milk formula modifies ileal sensitivity to LPS later in life in a piglet model. PLoS One. 2011;6(5):e19594.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2018;9:559.
Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. Panther version 11: expanded annotation data from gene ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45(D1):D183-9.
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. Gorilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 2019;10:48.