[en] Headspace gas chromatography is frequently used for aroma profiling thanks to its
ability to naturally exploit the volatility of aroma compounds, and also to provide
chemical information on sample composition. Its main advantages rely on simplicity,
no use of solvent, amenability to automation, and the cleanliness of the extract.
In the present contribution, the most effective sampling (dynamic extraction), separation
(multidimensional gas chromatography), and detection (mass spectrometry)
techniques for untargeted analysis are exploited in combination, showing their potential
in unraveling aroma profiles in fruit beers. To complete the overall analytical
process, a neat workflow for data analysis is discussed and used for the successful
characterization and identification of five different beer flavors (berries, cherry,
banana, apple, and peach). From the technical viewpoint, the coupling of purge-andtrap,
comprehensive two-dimensional gas chromatography, and mass spectrometry
makes the global methodology unique, and it is for the first time discussed. A (low-
)flow modulation approach allowed for the full transfer into the second dimension
with mass-spectrometry compatible flow (< 7 mL/min), avoiding the need of splitting
before detection and making the overall method sensitive (1.2–5.2-fold higher
signal to noise ratio compared to unmodulated gas chromatography conditions) and
selective.
Disciplines :
Chemistry
Author, co-author :
Franchina, Flavio ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Zanella, Delphine ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Lazzari, Eliane ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Stefanuto, Pierre-Hugues ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Focant, Jean-François ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Language :
English
Title :
Investigating aroma diversity combining purge‐and‐trap, comprehensive two‐dimensional gas chromatography, and mass spectrometry
Ceola, D., Huelsmann, R. D., Da-Col, J. A., Martendal, E., Headspace-solid phase microextraction and GC–MS followed by multivariate data analysis to study the effect of hop processing type and dry hopping time on the aromatic profile of top-fermented beers. Sep. Sci. PLUS 2019, 2, 245–252.
Magagna, F., Valverde-Som, L., Ruíz-Samblás, C., Cuadros-Rodríguez, L., Reichenbach, S. E., Bicchi, C., Cordero, C., Combined untargeted and targeted fingerprinting with comprehensive two-dimensional chromatography for volatiles and ripening indicators in olive oil. Anal. Chim. Acta 2016, 936, 245–258.
Shellie, R. A., Poynter, S. D. H., Li, J., Gathercole, J. L., Whittock, S. P., Koutoulis, A., Varietal characterization of hop (Humulus lupulus L.) by GC-MS analysis of hop cone extracts. J. Sep. Sci. 2009, 32, 3720–3725.
Purcaro, G., Cordero, C., Liberto, E., Bicchi, C., Conte, L. S., Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2014, 1334, 101–111.
Magagna, F., Cordero, C., Cagliero, C., Liberto, E., Rubiolo, P., Sgorbini, B., Bicchi, C., Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography – Mass spectrometry combined with high concentration capacity sample preparation techniques: toward a fully automated sensomic assessment. Food Chem. 2017, 225, 276–287.
Cordero, C., Cagliero, C., Liberto, E., Nicolotti, L., Rubiolo, P., Sgorbini, B., Bicchi, C., High concentration capacity sample preparation techniques to improve the informative potential of two-dimensional comprehensive gas chromatography-mass spectrometry: application to sensomics. J. Chromatogr. A 2013, 1318, 1–11.
Olaniran, A. O., Hiralal, L., Mokoena, M. P., Pillay, B., Flavour-active volatile compounds in beer: production, regulation and control. J. Inst. Brew. 2017, 123, 13–23.
Parker, D. K., Alcoholic Beverages: Sensory Evaluation and Consumer Research. Elsevier, Amsterdam, the Netherlands, 2011.
Holt, S., Miks, M. H., de Carvalho, B. T., Foulquié-Moreno, M. R., Thevelein, J. M., The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222.
Peddie, H. A. B., Ester formation in brewery fermentations. J. Inst. Brew. 1990, https://doi.org/10.1002/j.2050-0416.1990.tb01039.x.
Saerens, S. M. G., Delvaux, F. R., Verstrepen, K. J., Thevelein, J. M., Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb. Biotechnol. 2010, 96, 327–331.
Sakuma, S., Amano, H., Ohkochi, M., Identification of Off-Flavor Compounds in Beer. J. Am. Soc. Brew. Chem. 2000, 58, 26–29.
de la Guardia, M., Armenta, S., Greening Sample Treatments. 2011.
Kolb, B., Ettre, L. S., Static Headspace-Gas Chromatography: Theory and Practice, 2nd Edition, Wiley, Hoboken, NJ 2006.
Woolfenden, E., Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods. J. Chromatogr. A 2010, 1217, 2685–2694.
Badings, H. T., de Jong, C., Dooper, R. P. M., Automatic system for rapid analysis of volatile compounds by purge-and-cold-trapping/capillary gas chromatography. J. High Resolut. Chromatogr. 1985, 8, 755–763.
Rodríguez Madrera, R., Palacios García, N., García Hevia, A., Suárez Valles, B., Application of purge and trap extraction and gas chromatography for determination of minor esters in cider. J. Chromatogr. A 2005, 1069, 245–251.
Ruiz-Bevi, F., Font, A., Garca, A. N., Blasco, P., Ruiz, J. J., Quantitative analysis of the volatile aroma components of pepino fruit by purge-and-trap and gas chromatography. J. Sci. Food Agric. 2002, 82, 1182–1188.
Higgins Keppler, E. A., Jenkins, C. L., Davis, T. J., Bean, H. D., Advances in the application of comprehensive two-dimensional gas chromatography in metabolomics. TrAC - Trends Anal. Chem. 2018, 109, 275–286.
Rees, C. A., Franchina, F. A., Nordick, K. V., Kim, P. J., Hill, J. E., Expanding the Klebsiella pneumoniae volatile metabolome using advanced analytical instrumentation for the detection of novel metabolites. J. Appl. Microbiol. 2017, 122, https://doi.org/10.1111/jam.13372.
Martins, C., Brandão, T., Almeida, A., Rocha, S. M., Metabolomics strategy for the mapping of volatile exometabolome from Saccharomyces spp. widely used in the food industry based on comprehensive two-dimensional gas chromatography. J. Sep. Sci. 2017, 40, 2228–2237.
Parastar, H., Garreta-Lara, E., Campos, B., Barata, C., Lacorte, S., Tauler, R., Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna metabolic profiles exposed to salinity. J. Sep. Sci. 2018, 41, 2368–2379.
Costa, R., Ragusa, S., Russo, M., Certo, G., Franchina, F. A., Zanotto, A., Grasso, E., Mondello, L., Germanò, M. P., Phytochemical screening of Artemisia arborescens L. by means of advanced chromatographic techniques for identification of health-promoting compounds. J. Pharm. Biomed. Anal. 2016, 117, 499–509.
Stefanuto, P. H., Perrault, K. A., Dubois, L. M., L'Homme, B., Allen, C., Loughnane, C., Ochiai, N., Focant, J. F., Advanced method optimization for volatile aroma profiling of beer using two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2017, 1507, 45–52.
Franchina, F. A., Mellors, T. R., Aliyeva, M., Wagner, J., Daphtary, N., Lundblad, L. K. A., Fortune, S. M., Rubin, E. J., Hill, J. E., Towards the use of breath for detecting mycobacterial infection: a case study in a murine model. J. Breath Res. 2018, 12, 026008.
Martins, C., Brandão, T., Almeida, A., Rocha, S. M., Insights on beer volatile profile: optimization of solid-phase microextraction procedure taking advantage of the comprehensive two-dimensional gas chromatography structured separation. J. Sep. Sci. 2015, 38, 2140–2148.
Bahaghighat, H. D., Freye, C. E., Synovec, R. E., Recent advances in modulator technology for comprehensive two dimensional gas chromatography. TrAC - Trends Anal. Chem. 2019, 113, 379–391.
Seeley, J. V., Recent advances in flow-controlled multidimensional gas chromatography. J. Chromatogr. A 2012, 1255, 24–37.
Tranchida, P. Q., Franchina, F. A., Dugo, P., Mondello, L., Use of greatly-reduced gas flows in flow-modulated comprehensive two-dimensional gas chromatography-mass spectrometry. J. Chromatogr. A 2014, 1359, 271–276.
Tranchida, P. Q., Salivo, S., Franchina, F. A., Mondello, L., Flow-modulated comprehensive two-dimensional gas chromatography combined with a high-resolution time-of-flight mass spectrometer: a proof-of-principle study. Anal. Chem. 2015, 87, 2925–2930.
Franchina, F. A., Maimone, M., Tranchida, P. Q., Mondello, L., Flow modulation comprehensive two-dimensional gas chromatography-mass spectrometry using ≈ 4 mL min gas flows. J. Chromatogr. A 2016, 1441, 134–139.
Tranchida, P. Q., Comprehensive two-dimensional gas chromatography: a perspective on processes of modulation. J. Chromatogr. A 2018, 1536, 2–5.
Tranchida, P. Q., Maimone, M., Purcaro, G., Dugo, P., Mondello, L., The penetration of green sample-preparation techniques in comprehensive two-dimensional gas chromatography. TrAC - Trends Anal. Chem. 2015, 71, 74–84.
Franchina, F. A., Purcaro, G., Burklund, A., Beccaria, M., Hill, J. E., Evaluation of different adsorbent materials for the untargeted and targeted bacterial VOC analysis using GC×GC-MS. Anal. Chim. Acta 2019, 1066, 146–153.
Kolahgar, B., Pfannkoch, E., The use of different PTV inlet liner types for trapping alkanes, aromatics and oxygenated compounds during thermal desorption. Gerstel TechNote 2002.
Greenacre, M., Primicerio, R., Multivariate Analysis of Ecological Data. 2008.