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Headspace gas chromatography is frequently used for aroma profiling thanks to its

ability to naturally exploit the volatility of aroma compounds, and also to provide

chemical information on sample composition. Its main advantages rely on simplic-

ity, no use of solvent, amenability to automation, and the cleanliness of the extract.

In the present contribution, the most effective sampling (dynamic extraction), sep-

aration (multidimensional gas chromatography), and detection (mass spectrometry)

techniques for untargeted analysis are exploited in combination, showing their poten-

tial in unraveling aroma profiles in fruit beers. To complete the overall analytical

process, a neat workflow for data analysis is discussed and used for the success-

ful characterization and identification of five different beer flavors (berries, cherry,

banana, apple, and peach). From the technical viewpoint, the coupling of purge-and-

trap, comprehensive two-dimensional gas chromatography, and mass spectrometry

makes the global methodology unique, and it is for the first time discussed. A (low-

)flow modulation approach allowed for the full transfer into the second dimension

with mass-spectrometry compatible flow (< 7 mL/min), avoiding the need of split-

ting before detection and making the overall method sensitive (1.2–5.2-fold higher

signal to noise ratio compared to unmodulated gas chromatography conditions) and

selective.

K E Y W O R D S
dynamic headspace sampling, flow modulation GC × GC, food authenticity, time-of-flight mass spectrom-

etry, untargeted analysis

1 INTRODUCTION

The aroma of food and beverage is of primary importance

for the final products’ sensory properties. Therefore, high

Article Related Abbreviations: 1D/2D, first/second dimension; FOO,

frequency of observation; GC × GC, comprehensive two-dimensional gas

chromatography; HCA, hierarchical clustering analysis; P&T, purge and

trap; PCA, principal component analysis; PM, modulation period; RI,

retention index; VOC, volatile organic compounds.

is the interest in the analysis of volatile constituents, which

represents one of the main tools employed to study the indus-

trial processes involved in food products. It has been demon-

strated that the profile of the volatile organic compounds in

food carries concrete information that can be used to study,

improve or monitor the stages of the manufacturing process,

the raw materials used, the fermentation types, the shelf-life,

the storage conditions, and to discover eventual defects or

unwanted by-products [1–6]. In terms of composition, fatty

acid esters are the largest class of flavor compounds, and
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thanks to the lower odor threshold, they are key-components

for the aroma of the alcoholic beverages. Beside the esters,

also terpenoids, aldehydes, and ketones with characteristic

odors have been detected and reported to contribute to the

complex interplay of beer flavors [7–9]. From the manufac-

turing point of view, the presence of esters in alcoholic bev-

erages is affected by the different processes involved in their

production, for example, the fruit addition, fermentation, or

maturation [10,11]. It is also important to identify possible

flaws in the process that may lead to the development of off-

flavors, which are critical issues during beer production [12].

Therefore, the study and monitoring of the aroma could con-

tribute to improve the knowledge of the brewing process.

The most commonly used aroma analyses involve tech-

niques based on headspace enrichment, which consists in the

preconcentration on a sorbent material of the vapor phase

released from solid or liquid samples. These nondestructive

methods are considered green sample preparation techniques,

as they avoid the use of solvents, allowing the isolation of

VOCs in their natural form and are characterized by mini-

mum sample preparation [13]. Two principles of headspace

analysis exist depending on the equilibrium status between the

sample (solid or liquid) and the headspace (gaseous), namely

static and dynamic [14]. Compared to other extraction meth-

ods, the headspace techniques relate better to sensory proper-

ties, as the concentration of the aroma compounds in the gas

phase depends on the interaction of the volatiles with the food

matrix.

In static headspace sampling, the vapor phase is in equi-

librium with the sample, so that these methods are especially

appropriate for volatile compounds highly concentrated in the

headspace. In dynamic headspace sampling, the equilibrium

between the phases is continuously displaced in favor of the

headspace. In the different dynamic approach, the continuous

removal of volatiles from the matrix is obtained by flowing an

inert gas over the headspace (dynamic headspace or DHS) or

through it (purge and trap [P&T]) [14].

The bubbling of inert gas through the sample in the P&T

method greatly helps the stripping of volatile and semi-

volatile compounds from the sample, which are subsequently

concentrated on a sorbent trap. There are three main adsor-

bent types with different selectivities that can be used alone

or in combination, namely the porous polymers (e.g. Tenax®),

graphitized carbon blacks (e.g. CarbopackTM) and carbon

molecular sieves (e.g. Carboxen®). Generally, graphitized

carbon black and carbon molecular sieve materials are con-

sidered strong adsorbents because of their capacity in retain-

ing low-boiling point compounds. On the other side, the

porous hydrophobic polymers show better extraction recov-

ery compared to the previous sorbents in retaining analytes

with higher boiling points (in the range of C6–C26). The read-

ers are directed to the literature for a deeper description of the

sorbent material characteristics [15].

As an example, P&T has been used for analyzing fruits and

fruit juices and alcoholic beverages, followed by conventional

GC analysis [16–18]. Indeed, particularly well-suited for gas

(vapor) analysis, GC is the method of choice for the separation

of the sorbent-trapped VOCs, after their thermal desorption.

Introduced nearly three decades ago, comprehensive 2D

GC increases enormously the separation and identification

capability compared to conventional systems, especially when

coupled with MS. Nowadays, GC × GC–MS represents the

most powerful tool for VOC and semi-VOC determination,

especially in untargeted analysis [19–26]. In recent years,

thanks in part to a common intent to make the use of GC × GC

less expensive and more accessible, cryogenic-free or pneu-

matic modulators have gained attention [27,28]. Among the

latter group, recent studies have demonstrated that the com-

bination of differential flow modulators with MS is effective,

maintaining the high sensitivity and selectivity typical of the

GC × GC technique [29–31]. The reader is directed to the

literature for detailed explanations on the modulation forms,

with their advantages and drawbacks [27,32].

A variety of sample enrichment techniques have started

to be more commonly used in combination to GC × GC,

to exploit the wider potential of an integrated sample

preparation-separation approach [33]. In this context, even

though P&T represents a sensitive technique and holds the

advantages of a dynamic extraction, no uses are reported in

combination with comprehensive 2D GC.

In the current research, a method for the aroma determi-

nation and characterization of fruit beers is presented, includ-

ing (a) the sampling method, (b) the analytical measurements,

and (c) the data processing. The analytical method implicates

the P&T extraction on trap tubes, which are successively des-

orbed into a GC×GC–MS system equipped with a differential

flow modulator. The P&T and GC×GC techniques, which are

coupled here for the first time, are evaluated on beer VOCs.

Throughout the paper, importance is given to the optimiza-

tion of the flow modulation conditions, which allowed satis-

factory performances at MS-compatible flow, representing its

first use in combination with a ToF MS with 100% modulation

duty cycle.

2 MATERIALS AND METHODS

2.1 Samples and standards
The C7-30 n-alkane mix and the single C9-12, respectively, used

for retention index calculation and for modulation optimiza-

tion, were purchased from MilliporeSigma (Bellefonte, PA,

USA). The standard mix containing 37 compounds (Support-

ing Information Table S1), used for the GC × GC separation

evaluation, was supplied by Restek (Bellefonte, PA, USA).
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Five different types of commercial fruit beer, contained in

glass bottles (330 mL), were purchased from a local store

(Liège, Belgium). The main aroma characteristic of the five

fruity beers, and reported on their respective labels were

red berries (Ber), cherry (Che), banana (Ban), apple (App),

and peach (Pea). Samples were degassed by sonication for

5 min and aliquots of 10 mL were transferred into a 20 mL

headspace vial containing 1 g of NaCl. Four replicates were

prepared for each beer type.

2.2 P&T analysis
The Adsorbent Tube Injector System (ATISTM) from Milli-

poreSigma was used to either flash-vaporize standards into

thermal desorption tubes and to perform the P&T extraction.

For the evaluation of the GC×GC separation, 2 µL of a mix of

37 compounds (Restek, information in Supporting Informa-

tion Table S1), with a concentration of approximately 40 ppm,

was injected in the heated (120◦C) ATISTM glassware, and the

vapors were efficiently transferred in the thermal desorption

tube using a 100 mL/min nitrogen flow for 2 min.

For beer analysis, 10 mL of samples were purged at

room temperature for 5 min with a nitrogen flow rate of

150 mL/min, for a total sample volume of 750 mL. During

the purge cycle, the trap was also maintained at room temper-

ature. The trap consisted of thermal desorption tubes packed

with Tenax® TA (Gerstel, Linthicum Heights, USA). For each

sampling, a different tube was used. After each cycle, the

tubes were cleaned as advised by the manufacturer and ver-

ified to be blank. The tubes containing the sample were col-

lected and analyzed off-line in the GC × GC-ToF MS within

24 h. The absence of sampling breakthrough was assessed by

connecting two tubes in series during the sampling and ensur-

ing the absence of signals from the second tube.

2.3 Thermal desorption and flow modulated
GC × GC-ToF MS conditions
The system used for the analysis consisted of a Pegasus 4D

(Leco, St. Joseph, MI) GC × GC-ToF MS instrument with

an Agilent 7890 GC equipped with a thermal desorption

unit, cooled injection system, and a MultiPurposeSampler

autosampler (Gerstel, Japan). The modulation on the GC ×
GC occurred by means of a differential flow modulator in

symmetrical configuration [31]. Briefly, the laboratory-made

modulator was constructed by using two MXT Y-unions

(Restek) and a three-way solenoid valve (located outside

GC), connected to an auxiliary pressure source. The two

unions were bridged using a deactivated capillary of 20 cm ×
0.51 mm id for the loop.

The first dimension (1D) column was a nonpolar

Rxi-5SilMS (1,4-bis(dimethylsiloxy)phenylene dimethyl

polysiloxane, Restek) of 30 m × 0.25 mm id × 0.25 µm

df. The second dimension (2D) column was a mid-polar

Rxi-17Sil MS (equivalent to a (50%-Phenyl)-

methylpolysiloxane, Restek) of 5.0 m × 0.25 mm id ×
0.25 µm df. The carrier gas was helium and the optimized

column flow conditions were 0.4 and 7 mL/min, respectively,

in the 1D and 2D.

The initial temperature of the TDU was set at 30◦C then

heated to 300◦C (held 1 min) at 700◦C/min. The interface

temperature was kept at 275◦C. The VOCs were desorbed

from the thermal desorption unit in splitless mode and were

focused at 20◦C on a Tenax® glass liner. The injector was pro-

grammed from 20 to 300◦C at 12◦C/s, and the injection was

performed in split mode (1:10). The primary and secondary

oven temperature program was the same and started at 50◦C

(hold 2 min), then ramped to 260◦C with a rate of 3◦C/min. A

final fast temperature ramp of 20◦C/min to 330◦C assured the

column conditioning and cleaning for the successive run. The

final PM was 6.6 s, consisting of an accumulation and rein-

jection time of 6 and 0.6 s, respectively. A mass range of 40

to 400 m/z was collected at a rate of 150 spectra/s. The ion

source was maintained at 230◦C.

For the separation and sensitivity comparison, unmod-

ulated GC–MS profiles were acquired switching off the

solenoid valve and maintaining the same GC × GC-MS flow

and temperature conditions.

Data acquisition, data alignment, and data processing were

performed using ChromaTOF® (Leco, v. 4.72). For peak

detection, an S/N cutoff was set at 150, and detected peaks

were tentatively identified by a forward search using the NIST

2017 library (70 % minimum similarity was required) and

using retention index information (±20 RI was considered).

The reference linear retention indices on the nonpolar col-

umn and the compound odor characteristics were extrapolated

from AromaOffice® (Gerstel, v.4).

For the alignment of peaks across chromatograms, maxi-

mum 1D and 2D retention time deviations were set at ±12 s

and ±0.1 s, respectively, and the inter-chromatogram spec-

tral match threshold was set at 65%. Moreover, the search for

peaks not found by the initial peak finding during the align-

ment was set to 50 S/N.

2.4 Statistical analysis
After assessing that the chromatographic signal for each

chemical class was within the linear range, the area of unique

masses was used for the entire data processing. A frequency

of observation criterion was applied to use the most consis-

tent features and consisted of a positive detection in 75% of

the replicates within each sample type (three out of four).

Statistical analyses was performed using R (version 3.3.0).

The only data manipulation involved the auto-scaling for PCA

and heatmap visualization. The R packages FactoMineR,

MetaboAnalyst, and VennDiagram were used to generate
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PCAs, HCA, correlation/distance matrix, and the Venn

diagram.

3 RESULTS AND DISCUSSION

3.1 Sampling and GC × GC-ToF MS
optimization
The two main variables that account for extraction efficiency

of analytes using the P&T technique are the total extraction

volume (or purge volume) and sample extraction tempera-

ture. Considering the latter, although sample heating generally

improves the VOCs extraction, temperatures higher than 30◦C

can alter original characteristics of beers. Thus, the extraction

temperature was set at room temperature (20◦C). The total

purge volume was instead adjusted to 750 mL to avoid break-

through and maintain a satisfactory sensitivity for the beer

samples.

The aroma composition of the fruit beers is mainly charac-

terized by the presence of esters, aldehydes, ketones, alcohols,

and terpenoids [7,9]. Thus, the selection of the sorbent type

for the extraction was driven by the selectivity of the trapping

material, with the goal to retain as much as information as

possible for the untargeted analysis, therefore, maintaining the

widest analyte coverage with acceptable sensitivity and good

repeatability. In an analogous study, in which different sorbent

materials were compared and discussed, the porous polymer

Tenax® was confirmed to be optimal for dynamic headspace

analysis. Specifically for high water content samples, Tenax®

was reported more repeatable and sensitive than other sor-

bents over a wide range of analytes [34,35]. For these reasons,

Tenax® was chosen as trapping material for thermal desorp-

tion tubes and the GC inlet liner, and it can be considered as a

good first choice in case of untargeted profiling. In case of tar-

geted applications, depending on the nature of the analytes of

interest and the objective, more selective sorbents or a com-

bination of them can be used for sampling. For example, if

highly volatile compounds (e.g. ≤C6) are sought, the use of

a stronger sorbent can give better extraction recoveries. How-

ever, in this case, more attention must be paid for the water

management during the desorption and injection into the GC.

After setting-up the sampling parameters, a fine optimiza-

tion of the GC × GC separation was realized. Particular atten-

tion was devoted to the flow modulation conditions to make

possible both the unitary transfer into the 2D and an efficient

modulation. The flow modulation approach used is based on

previous researches, where the accumulation and injection

phases of modulation were reconsidered in terms of intra-

loop chromatographic bands [29,31]. Differently from other

differential flow modulation approaches, where incompatible

MS-flows are used (>20 mL/min), a fine matching of these

bands within the loop during the modulation timings allows

for an efficient modulation with lower flow rate (<7 mL/min),

which enables the full transfer into the 2D and the detector

with no need to divert the effluent, and thus preserving the

sensitivity. For such a reason, the terminology (low-) flow

modulation GC × GC is used. In a previous attempt, the

same modulation concept was applied to an HR-ToF, with this

mainly focusing on the proof-of-principle capability of cou-

pling flow modulation with high resolution MS, where only

3.4–2.1 mL/min (43–34% of the total flow) was directed to the

detector [30]. Therefore, the present contribution represents

the first research in which a total transfer, also called modula-

tion unit duty cycle, is successfully exploited on a ToF mass

analyzer.

In Figure 1A–C, the results from the optimized conditions

are shown. At first, the adjustment of the accumulation and

reinjection period was performed on alkanes standards. A

solution of C9-C12 alkanes was subjected to GC × GC–MS

analyses under isothermal conditions (150◦C), and using a

loop of 20 cm × 0.51 mm id. This is a standard procedure

used to optimize, as rapidly as possible, the modulation condi-

tions. Obviously, these alkanes elute within an acceptable elu-

tion time at 150◦C. The choice of a shorter accumulation loop

(and a single accumulation/re-injection step) was also made to

simplify the flow modulation optimization process.

The optimized GC × GC conditions consisted of a primary

and secondary column flow rates of 0.4 and 7 mL/min,

respectively. The final PM was 6.6 s, consisting of 6 s and

0.6 s, respectively, for the accumulation and the reinjection

time. During the two stages of the modulation, the pressure

conditions inside the loop generate different average linear

velocities of the isolated chromatography bands during the

accumulation and reinjection time, respectively, ū acc and

ū inj. These conditions of gas flow generated an intra-loop

ū acc of 1.5 cm/s; at the end of the accumulation time (6 s),

the analyte band should occupy a loop length of 9 cm. The

intra-loop conditions during the subsequent modulation stage

(0.6 s) generated a ū inj of 34.4 cm/s, which was sufficient

for the complete ejection of the analyte bands from the loop.

Indeed, such conditions gave adequate peak-shape and base-

line drop. For C12 alkane, a peak width of 600 ms (4σ) was

observed and the untransformed chromatogram is shown in

Figure 1A.

Following the optimization of the modulator gas flows and

velocities, a mix containing 37 compounds (isomers included)

of various chemistries was flash-vaporized into the sorbent

tubes (see Section 2.2 for details) and injected to adjust

the desorption conditions and to evaluate the overall GC ×
GC separation (Figure 1B). The optimized GC × GC con-

ditions and the apolar–midpolar column set enabled a good

occupation of the 2D separation space. The chromatographic

performance attained can be observed in Figure 1C, which

reports an untransformed 60-s expansion relative to the elu-

tion zone of peaks 1–4. Here, eucalyptol (peak 2) is baseline
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F I G U R E 1 Raw chromatograms and contour plot resulting from the (low-) flow modulated GC × GC-ToF MS optimization. (A)

Untransformed chromatogram expansion of C9 alkane; (B) contour plot of the 37 standards mix (including isomers). (C) Raw chromatogram

expansion of the rectangle in (B); marked with "*" the highest modulated peaks. All the chromatograms are visualized using the total ion current

(TIC). For peak identification, refer to Supporting Information Table S1

separated from benzyl alcohol (peak 3, Rs ≥ 1.5) and the col-

umn bleed.

3.2 Beer analysis and data processing
workflow
Twenty chromatograms were obtained from the five sam-

ple types (n = 4) and were aligned based on retention times

and mass spectra, obtaining a total of 457 peaks (see Sec-

tion 2.3 for alignment details). After artifact removal (silox-

anes, phthalates, and bleed from the columns), a refined list

of 358 peaks was obtained.

For further data analysis and to make the downstream data

analysis more reliable and robust, an inclusion criterion was

applied to consider only the peaks detected in at least three

out of four replicates (FOO of 75%) within each group type.

These are defined here as the most consistent features and

they resulted in a list of 285 peaks. Figure 2 shows the over-

all flow of data treatment applied in the present investigation.

The Venn diagram in Figure 2 (right side) depicts the qualita-

tive distribution of the features among the five beer types. As

can be observed, the majority (65) of the peaks consistently

detected in the headspace are shared by all the fruit beers ana-

lyzed; interestingly, each beer is characterized by a unique set

of compounds, ranging from 13 (peach) to 21 (apple), and

contributing to their volatile composition and aroma. It must

be said that, beside the qualitative odor of the compound, the

odor threshold is the most important quantitative parameter

for the aroma formation and characterization [7]. The infor-

mation of these representative peaks, along with retention

indices and odor characteristics, are reported in Table 1.

Unmodulated GC–MS profiles were concurrently acquired

to evaluate the additional value provided by GC×GC, namely

the higher sensitivity and separation power. In Table 1, S/N

values of representative peaks and unique for each beer type

(i.e. those features at the extremities of the ellipses in the Venn

diagram, Figure 2), are reported for the unmodulated GC and

GC×GC runs. A characteristic ion for each peak was selected

to extrapolate the S/N values. For 12 compounds, some factors

made difficult the extrapolation of S/N values in the unmod-

ulated chromatograms. This was due to one or the combina-

tion of the following issues: (a) the lower sensitivity of the
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F I G U R E 2 Scheme illustrating the flow of data treatment for the beer analysis. The numbers in the circles relate to the number of analytes

detected. The Venn diagram shows the qualitative distribution of the compounds amongst the different beer types. Step a) chromatograms alignment;

Step b) artifact removal using scripts; Step c) adoption of an inclusion criterion to retain the more consistent features (presence in at least three-fourth

replicates within each group type)

unmodulated approach, (b) the more frequent occurrence of

co-elutions combined with non-selective ions for S/N calcu-

lation. For such peaks, unmodulated GC S/N values are not

reported.

Signal intensities resulted higher in the GC × GC exper-

iment due to the rapid second dimension elution conditions.

On the other hand, the noise amplitude is comparable, because

the same MS acquisition frequency (i.e. 150 Hz) was used in

both unmodulated and GC × GC analysis. In terms of S/N val-

ues, an average threefold increase is obtained in the GC × GC

trace, ranging from a factor×1.2 (1-dodecanol) to×5.2 (trans-

rose oxide). One of the reported peaks (i.e. 10-undecen-1-ol)

shows almost identical S/N. The reason for this S/N range can

be explained by a higher extent of band broadening due to

the greater retention on the secondary column, which affects

negatively the signal intensities of the more polar compounds.

It must be said that for a more appropriate S/N comparison

with traditional GC, a single column configuration should be

used. Indeed, the unmodulated conditions are far from ideal

in terms of band broadening, because of the contribution of

the accumulation loop and the 2D column. Another way to

increase the sensitivity is the adoption of fast-GC methods

with a higher column flow and/or narrow bore columns (i.e.
≤ 0.18 mm id).

The application of a FOO threshold greatly improves the

data analysis and interpretation (step c, Figure 2), directing

the attention to the more consistently detected peaks. The raw

area (i.e. not normalized or log-transformed) of these features

was used to evaluate the degree of correlation and repeatabil-

ity within the groups. To do this, Spearman correlation and

Euclidean distances were used as metrics [36]. The former is

generally used to measure the strength of a correlation and

the resulting correlation matrix is illustrated in Figure 3A.

Here, the sample groups resulted very strongly correlated,

with average Spearman values ranging from 0.85 (apple) to

0.91 (berries).

To evaluate the repeatability of the overall method in the

untargeted analysis, a distance matrix was built considering

the samples. The average values were extrapolated and are

showed in Figure 3B. Here, a value close to 0 would indicate

the near proximity of the samples, and thus their similarity in

the qualitative and quantitative VOCs composition. From the

table inset of Figure 3B, it can be noted that the intragroup dis-

tances on the diagonal are three times smaller than the inter-

group distances between different sample types. Such a dis-

tance matrix and the dendrogram overview is an indication of

(a) the high repeatability of the overall method for samples of

the same group, and (b) the separation of the groups based on

their proximities.

Once the intragroup repeatability and correlation were

assessed, the next step involved the untargeted analysis of

the samples using the VOCs. The 285 consistent features

obtained from the neat unsupervised data analysis workflow

illustrated in Figure 2 were plotted in the principal component

space to visualize the variance between these sample types

(Figure 4A). The data scaling (auto-scaling) for PCA was

the only data manipulation realized. Indeed, as a result of the

controlled analytical conditions and the distinctive sample
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F I G U R E 3 Correlation matrix (A) and dendrogram from hierarchical clustering (B), using the 285 consistent features. The correlation was

calculated using Spearman’s coefficient and the average values for each group are reported in table inset. The dendrogram was obtained using the

Euclidean distance metric on the samples and the average values for each combination of sample groups are reported in the table inset

F I G U R E 4 Principal component analysis (A) and heatmap generated using hierarchical clustering analysis (B) of the five fruit beer types. The

ellipse in (A) represents the 95% confidence interval. Cluster algorithm for HCA: Ward

types, the 285 features were not further treated (i.e. trans-

formation or normalization). However, for larger long-term

studies, the addition of a water-soluble internal standard

would be beneficial to monitor and correct the variations in

case of instrumental drift.

In the PCA of Figure 4A, the first two components

explained 42.5% of the variance and a clear clustering is

observed for all the sample groups. The HCA provides an

intuitive visualization of the features amongst the samples.

This is plotted in Figure 4B, where a complete differentia-

tion of the five beer types is observed. Because of the satis-

factory discrimination between the beers and the high amount

of information usable with this untargeted approach, no addi-

tional data analysis steps (e.g. feature selection and reduction)

were necessary.

The overall methodology herein reported, intended as the

combination of the sampling, analytical measurements, and

untargeted data processing workflows, makes possible the

extrapolation of a high amount of unbiased information from

the aroma, which can be used for beer differentiation and for

odor notes extrapolation (Figure 4).

However, it represents one possible usage of the infor-

mation provided. Indeed, a profound knowledge of the

beer-making stages together with a deeper scrutiny of the

compounds list would certainly help, for example, to identify

markers to tailor and fix specific industrial processes.
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4 CONCLUDING REMARKS

The proposed analytical method, including the clear and

straightforward data analysis workflow, was demonstrated to

be a powerful and repeatable approach for aroma analysis,

providing the information for the VOCs characterization of

fruit beers. The use of purge-and-trap for sample preparation

resulted particularly suitable for VOC extraction in beer and

it represents a valid alternative to static headspace techniques

(i.e. SPME). The P&T device herein used can be easily imple-

mented at the production site for in situ sampling.

The routine application of the entire methodology to the

analysis of commercial products could be an effective tool for

the monitoring of technical processes that influence fruit beer

making. Furthermore, this method can easily be extended

and tailored to other liquid samples and problematics as well,

either in food, biological or environmental applications.

From a technical point of view, this is the first published

use of P&T sampling, thermal desorption and GC × GC-MS

in combination. The high sensitivity and the green nature

of P&T sampling make this extraction technique an ideal

up-front tool for a flow modulated GC × GC-MS system. In

this regard, the concept of a differential flow modulator with

total transfer at MS-compatible flows is demonstrated on a

ToF MS, confirming the effectiveness of the approach, both

in terms of selectivity and sensitivity, and with this research

representing its initial use. In terms of sensitivity, the S/N

gain of this (low-) flow modulation approach resulted in the

range of 1.2–5.2-fold higher compared to the unmodulated

GC method.

It is anticipated that future studies will exploit the present

combination in biological and environmental applications.
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