Abstract :
[en] The use of test-day models to model milk mid-infrared (MIR) spectra for genetic purposes has already been explored; however, little attention has been given to their use to predict milk MIR spectra for management purposes. The aim of this paper was to study the ability of a test-day mixed model to predict milk MIR spectra for management purposes. A data set containing 467,496 test-day observations from 53,781 Holstein dairy cows in first lactation was used for model building. Principal component analysis was implemented on the selected 311 MIR spectral wavenumbers to reduce the number of traits for modeling; 12 principal components (PC) were retained, explaining approximately 96% of the total spectral variation. Each of the retained PC was modeled using a single trait test-day mixed model. The model solutions were used to compute the predicted scores of each PC, followed by a back-transformation to obtain the 311 predicted MIR spectral wavenumbers. Four new data sets, containing altogether 122,032 records, were used to test the ability of the model to predict milk MIR spectra in 4 distinct scenarios with different levels of information about the cows. The average correlation between observed and predicted values of each spectral wavenumber was 0.85 for the modeling data set and ranged from 0.36 to 0.62 for the scenarios. Correlations between milk fat, protein, and lactose contents predicted from the observed spectra and from the modeled spectra ranged from 0.83 to 0.89 for the modeling set and from 0.32 to 0.73 for the scenarios. Our results demonstrated a moderate but promising ability to predict milk MIR spectra using a test-day mixed model. Current and future MIR traits prediction equations could be applied on the modeled spectra to predict all MIR traits in different situations instead of developing one test-day model separately for each trait. Modeling MIR spectra would benefit farmers for cow and herd management, for instance through prediction of future records or comparison between observed and expected wavenumbers or MIR traits for the detection of health and management problems. Potential resulting tools could be incorporated into milk recording systems.
Scopus citations®
without self-citations
2