
ABSTRACT

The use of test-day models to model milk mid-infrared 
(MIR) spectra for genetic purposes has already been ex-
plored; however, little attention has been given to their 
use to predict milk MIR spectra for management pur-
poses. The aim of this paper was to study the ability of 
a test-day mixed model to predict milk MIR spectra for 
management purposes. A data set containing 467,496 
test-day observations from 53,781 Holstein dairy cows 
in first lactation was used for model building. Principal 
component analysis was implemented on the selected 
311 MIR spectral wavenumbers to reduce the number 
of traits for modeling; 12 principal components (PC) 
were retained, explaining approximately 96% of the 
total spectral variation. Each of the retained PC was 
modeled using a single trait test-day mixed model. The 
model solutions were used to compute the predicted 
scores of each PC, followed by a back-transformation 
to obtain the 311 predicted MIR spectral wavenum-
bers. Four new data sets, containing altogether 122,032 
records, were used to test the ability of the model to 
predict milk MIR spectra in 4 distinct scenarios with 
different levels of information about the cows. The aver-
age correlation between observed and predicted values 
of each spectral wavenumber was 0.85 for the modeling 
data set and ranged from 0.36 to 0.62 for the scenarios. 
Correlations between milk fat, protein, and lactose 
contents predicted from the observed spectra and from 
the modeled spectra ranged from 0.83 to 0.89 for the 
modeling set and from 0.32 to 0.73 for the scenarios. 
Our results demonstrated a moderate but promising 
ability to predict milk MIR spectra using a test-day 
mixed model. Current and future MIR traits prediction 

equations could be applied on the modeled spectra to 
predict all MIR traits in different situations instead of 
developing one test-day model separately for each trait. 
Modeling MIR spectra would benefit farmers for cow 
and herd management, for instance through prediction 
of future records or comparison between observed and 
expected wavenumbers or MIR traits for the detection 
of health and management problems. Potential result-
ing tools could be incorporated into milk recording 
systems.
Key words: mid-infrared spectroscopy, mixed model, 
milk composition, management

INTRODUCTION

Fourier-transform mid-infrared (MIR) spectroscopy 
is a valuable technique to describe the molecular struc-
ture of food materials. It involves the absorption of 
electromagnetic radiation by a sample at frequencies 
(400 to 4,000 cm−1) that are characteristic of specific 
chemical bonds of a molecule (Van de Voort, 1992). 
The MIR spectroscopy provides analyses with high 
throughput, at low cost and on a large scale. Therefore, 
it is used in the dairy industry worldwide to predict 
major milk components (e.g., lactose, fat, protein con-
tents, or urea) for milk quality control, milk payment, 
management of herds, or genetic studies (Gengler et al., 
2016; International Committee for Animal Recording, 
2017). More recently, studies have focused on milk MIR 
spectroscopy to predict other traits such as fine milk 
composition (Soyeurt et al., 2009; Bonfatti et al., 2011), 
milk technological properties (Ferragina et al., 2013; 
Visentin et al., 2015), body energy status (McParland 
et al., 2011), enteric methane emissions (Vanlierde et 
al., 2018), BW (Soyeurt et al., 2019), or geographical 
origin of milk (Scampicchio et al., 2016; Caredda et al., 
2017).

Test-day models (TDM) model individual test-day 
records (i.e., repeated measurements over time that are 
specific to a particular testing day) such as milk yield 
or MIR traits records in dairy cattle. One of several 
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benefits of TDM is the ability to account for individual 
animal effects and for environmental factors occurring 
on the day of milk recording (Wiggans and Goddard, 
1997). Their use in genetic evaluations has been widely 
explored (e.g., de Roos et al., 2004; Hammami et al., 
2009; Leclercq et al., 2013). However, relatively few 
published studies considered the use of TDM for predic-
tion and management purposes. For example, Mayeres 
et al. (2004), Caccamo et al. (2008), and Gillon et al. 
(2010) investigated the use of TDM to predict future 
daily milk, fat, and protein yields for management. 
Koivula et al. (2007) studied herd-management effect 
solutions from milk yield, fat, and protein contents and 
SCS TDM, and Bastin et al. (2009) explored the solu-
tions and predictions of a TDM for milk urea.

Modeling MIR traits with TDM would have numerous 
benefits for herd management, such as the prediction of 
future records or missing lactation records, the evalua-
tion of cow responses to herd management changes by 
adjusting herd factors in the model, or simulation of 
new records by modifying effects in the model. Deci-
sion support tools incorporating such models could help 
farmers to detect problems affecting individual cows 
or the whole herd through direct comparison between 
the actual and predicted traits, predict the production 
potential of heifers, analyze the results of dietary or 
environmental changes, and so on. With the increasing 
number of MIR traits (Gengler et al., 2016), implement-
ing one TDM for each trait would be time and resource 
consuming from a workload and computational point 
of view. Therefore, predicting the whole milk MIR 
spectrum using TDM would be beneficial because of 
the reduction of the number of models to implement. 
All current and future MIR prediction equations could 
be applied on the modeled spectra to predict all MIR 
traits, without the need to do one TDM separately for 
each trait. Also, in some instances, using the whole 
spectra instead of specific MIR traits could bring more 
comprehensive information.

Several authors have already modeled milk MIR 
spectral wavenumbers using TDM for genetic purposes 
(e.g., Soyeurt et al., 2010; Wang et al., 2016; Rovere et 
al., 2019), but few have tackled the possible use for pre-
dictive and management purposes (e.g., Dagnachew et 
al., 2013b; Lainé et al., 2017). Therefore, the objective 
of this paper was to study the ability of a test-day mixed 
model to predict milk MIR spectra from first-parity 
Holstein cows with the perspective of herd manage-
ment. To do so, we compared observed and predicted 
spectral wavenumbers and we examined predicted MIR 
milk components obtained using the observed versus 
predicted spectra. We tested different scenarios to as-
sess the accuracy of the model when knowing more or 
less information about the cows.

MATERIALS AND METHODS

Modeling Data

The data used to build the model were collected from 
January 2012 to July 2017 by the Walloon Breeding As-
sociation (Ciney, Belgium) during the Walloon routine 
milk recording. A total of 467,496 test-day records from 
53,781 Holstein dairy cows in first lactation within 541 
herds were selected. Each record included the identifi-
cation number of the cow and herd, the lactation stage 
(i.e., DIM), the test date, milk composition information 
(fat, protein, and lactose contents, SCC), the milk MIR 
spectrum, and pedigree data. Pedigree data contained 
139,385 animals extracted from the database used for 
the official Walloon genetic evaluation and were lim-
ited to animals born after 1985. Milk MIR spectra were 
obtained by the analysis of individual milk samples 
on MilkoScan FT6000 spectrometers (Foss, Hillerod, 
Denmark) at the Comité du Lait laboratory (Battice, 
Belgium). Milk MIR spectra included 1,060 spectral 
wavenumbers expressed in absorbance and covering 
the absorption of light in the infrared region located 
from 900 to 5,000 cm−1. All studied cows had at least 
5 test-day records per lactation and belonged to herds 
with more than 10 recorded cows in first lactation on 
average over the studied period. Records with fat and 
protein contents as well as milk yield out of the limits 
set by the International Committee for Animal Record-
ing (2017) were discarded (i.e., 3 L < milk yield <99.9 
L, 1.5 g/dL of milk < fat <9 g/dL of milk, 1 g/dL of 
milk < protein <7 g/dL of milk). Records within the 
0.1% upper values and 0.1% lower values for lactose 
content as well as within the upper 0.1% values for milk 
somatic cells were removed. Records with DIM values 
higher than 563 (1% upper values) were also discarded.

Preprocessing of Modeling MIR Spectra

To remove baseline variation, the first derivative at 
wavenumber X was calculated on the raw spectra as the 
difference between the spectral wavenumber X−2 and 
the spectral wavenumber X+2. A total of 311 spectral 
wavenumbers out of the 1,060 were retained for this 
study, covering 3 MIR spectral regions: 933 to 1,589 
cm−1, 1,704 to 1,809 cm−1, and 2,553 to 2,981 cm−1. 
Some spectral regions were excluded based on the ex-
perience of the research team; these are regions that 
cannot be used effectively as they have low signal-to-
noise ratio or little relevant chemical information (e.g., 
Iñón et al., 2004; Soyeurt et al., 2010; Capuano et al., 
2014). Previous studies involving MIR spectra also re-
tained similar spectral regions (e.g., Grelet et al., 2016; 
Vanlierde et al., 2018).
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Spectral wavenumbers were standardized (i.e., cen-
tered and scaled) by subtracting the corresponding 
mean and dividing by the corresponding standard devi-
ation. Then, principal components analysis (PCA) was 
carried out on the 311 standardized spectral wavenum-
bers. We performed standardization and PCA using 
the “stats” package in R (version 3.3.3; R Core Team, 
2017). The PCA method extracts the information from 
a multivariate data set and expresses it as a set of new 
variables called principal components (PC). These PC 
are a linear combination of the original variables keep-
ing the largest amount of information contained in the 
original data (i.e., the PC explain most of the variance 
of the original data, Palm, 1998). The use of PCA has 
multiple advantages for this study: decreasing the num-
ber of traits to reduce computational operations and 
the independence of PC, allowing a separate modeling 
without losing information about the interactions be-
tween spectral wavenumbers (Soyeurt et al., 2010). Let 
X(N×K) be the matrix for the 311 spectral wavenumbers 
for the 467,496 test-day records, where N is the number 
of test-day records and K is the number of spectral 
wavenumbers. The contributions of the spectral wave-
numbers to each PC are given by the eigenvectors. The 
amount of variance retained by each PC is measured by 
its eigenvalue. The PCA for X is expressed as

	 X(N×K) = Z(N×M) × VT
(M×K) + E(N×K),	 [1]

where M is the number of PC selected (M ≤ K), Z(N×M) 
is the matrix of the PC scores, VT

(M×K) is the transpose 
of the eigenvector matrix, and E(N×K) is the residual 
matrix after the M PC are extracted from X(N×K). The 
number of PC selected was based on the proportion of 
variance of the spectral wavenumbers explained and on 
the accuracy of the model.

Model

A total of M single-trait test-day mixed models were 
applied on the PC scores for the M selected PC (i.e., 
one model was run separately for each PC). Using sin-
gle-trait models was preferred over a multi-trait model, 
because PC are phenotypically de-correlated and be-
cause of the computational advantage for large data 
sets. Running several single-trait models in parallel 
(i.e., data parallelism) is faster and less computation-
ally demanding than running one multi-trait model, 
and therefore easier to implement in practice (Shallue 
et al., 2019). The single-trait test-day mixed model 
used was defined as follows:

	 y = Xb + Zu + e,	 [2]

where y is the vector of observations (PC scores), b 
is the vector of fixed effects [including herd-test-year 
(HTY) effect, herd-test-month (HTM) effect, and 
DIM], u is the vector of random effects (including herd-
test-day (HTDr) effect, additive genetic effect, and 
permanent environmental effect), and e is the vector of 
random residual effects. X and Z are the correspond-
ing incidence matrices. The distributional assumption 
about the random terms of the model was

	 HTDr HTDr
2~ ,N 0 I, σ( ) 	

	 additive genetic 2~ ,N g0 A, σ( ) 	

	 permanent environment PE
2~ ,N 0 I, σ( ) 	

	 e N e~ ,0 I, σ2( ) 	

where I was an identity matrix, A was the pedigree 
relationship matrix, σHTDr

2  was the variance of the herd 
test-day effect, σg

2 was the additive genetic variance, σPE
2  

was the variance of the permanent environmental ef-
fect, and σe

2 was the error variance. We divided DIM 
into 38 classes of 15 d. Mayeres et al. (2002, 2004) 
suggested a remodeling of the HTD fixed effect usually 
used in genetic models by replacing it with 3 herd-test-
related effects to allow prediction of future test-day 
measurements for predictive purposes. These 3 effects 
are a fixed herd-test month-period effect, a fixed herd-
test-year effect, and a random herd-test-day effect. The 
herd-test month-period effect and the herd-test-year 
effect represent the herd level and its seasonal trend 
and allow the prediction of future records, whereas the 
herd-test-day effect takes into account the effect of the 
herd at a specific date and is not assigned to the 2 
other herd effects. In our study, we considered a simple 
herd-test-month effect instead of a herd-test month-
period effect because the number of years considered in 
our study was higher. Variance components for random 
effects were estimated using expectation-maximization 
REML as described by Misztal (2018).

Spectral Wavenumbers Predictions  
for the Modeling Data Set

The solutions of the model were obtained using the 
BLUP method solved using the preconditioned conju-
gate gradient algorithm (Tsuruta et al., 2001; Misztal, 
2018). Estimates of the fixed and random effects were 
used to compute the predicted scores of each PC. Then 
the predicted 311 MIR spectral wavenumbers (i.e., X̂ � 
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matrix) were obtained using the equation derived from 
[1]:

	 ˆ ˆ ,X Z VT= × 	 [3]

where Ẑ is the matrix of the predicted PC scores and 
VT is the transpose of the eigenvector matrix of the 
PCA, and by adding the mean and multiplying by the 
standard deviation as data were standardized. For each 
spectral wavenumber, correlations were computed be-
tween observed and predicted values. Estimated vari-
ance components were also back-transformed to a 
spectral basis using the eigenvector matrix.

Spectral Wavenumber Predictions  
for Different Scenarios

Four new data sets, containing altogether 122,032 re-
cords from first-parity Holstein cows, were used to test 
the ability of the model to predict accurately milk MIR 
spectrum in 4 distinct scenarios with different levels of 
information about the cows. These new data sets had 
different levels of relatedness with the modeling data 
set. Information about each scenario and considered ef-
fect estimates for predictions are presented in Table 1.

The 2 first scenarios corresponded to common prac-
tical situations. The first scenario represented predic-
tions of future test-day spectra for cows in production. 
It included cows for which all effects were known except 
the HTDr. Data were collected from August to early 
December 2017 (i.e., over a 4-mo period after modeling 
data). As expected, the median DIM was high (i.e., 
310 d), but was within the DIM range of the model-
ing set. A similar scenario with the same known and 
unknown effects could be applicable to the imputation 
of missing spectral records for a cow with previous re-
corded spectral data. The second scenario represented 
predictions of records for a new cow in a known herd 

(e.g., the evaluation of the potential of a heifer before 
it produces milk). Data were collected from August to 
early December 2017 and included cows with no known 
test date (i.e., unknown HTDr) and no previous animal 
data (i.e., the permanent environmental effect was un-
known).

The third and fourth scenarios were created based on 
records discarded when selecting data for the modeling 
data set. The third scenario included cows with per-
manent environment as the only unknown effect. This 
could represent a situation when we want to evaluate 
the potential of a new cow like a heifer and compare 
it to existing test-day records of the other cows of the 
herd. The fourth scenario included cows with minimal 
information (i.e., only the DIM effect and the genetic 
effect were known). Data were unrelated to the model-
ing set regarding cows and herds, but were collected 
over the same period. This scenario, rather theoretical, 
would represent predictions of records for farms that 
have no spectral data, but only pedigree information. 
The interest, more academic, is to see how the accuracy 
would evolve when very little information is known.

For each scenario, the predicted PC scores were 
obtained using the solutions from solving equations as-
sociated with the mixed model [2]. New data sets used 
had different levels of relatedness with the previous 
modeling data set adding scenario records. The trait 
values (i.e., PC scores) of the scenario records were 
considered unknown during solving. The pedigree was 
updated compared with the modeling data set to add 
animals related to the scenario cows (i.e., 191,685 ani-
mals in total). This strategy permitted estimation of 
predicted PC scores for scenario records by summing 
the solutions (i.e., fixed and random effect estimates) 
equivalent to those obtained using the modeling data. 
Missing effects, depending on the scenario, were set to 
zero. By extending the pedigree, solutions for genetic 
effect were automatically computed for new animals 
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Table 1. Description of the 4 scenarios (number of records, cows, and herds; effect estimates; and meaning)

Scenario Records Cows Herds

Effect estimate1

  Example of meaning in practiceHTY HTM DIM HTDr Gen PE

1 10,057 4,246 422 X X X X X Future or missing records for cows with previous 
records

2 17,025 7,035 430 X X X X* Potential of heifers or new cows
3 32,315 12,126 538 X X X X X* Potential of heifers or new cows for a specific test 

date
4 62,625 7,507 414 X X* Cows with minimal information
1Crosses in the effect estimate columns indicate known estimates used to calculate the predictions of spectral data. Unknown effect estimates 
were set to zero. HTY = herd-test-year fixed effect; HTM = herd-test-month fixed effect; DIM = fixed effect of days in milk; HTDr = random 
herd-test-day effect; Gen = random additive genetic effect; PE = random permanent environmental effect.
*An asterisk means that the genetic solutions are based on parent averages. The absence of an asterisk means that the genetic solutions are 
based on the estimated breeding value of the cow.
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with scenario records. These genetic solutions can be 
considered being the estimated breeding value for a cow 
that had previous production records (i.e., scenario 1), 
or parent averages derived through the pedigree in all 
other situations (i.e., scenarios 2, 3, and 4). The per-
manent environmental effect solutions were known for 
cows with previous production records, but were set to 
an expected value of zero for other cows. The predicted 
PC scores were back-transformed to the 311 spectral 
wavenumbers using the PCA eigenvectors of the model-
ing set (Equation [3]) followed by de-standardization. 
For each spectral wavenumber, correlations were com-
puted between observed values and predicted values.

MIR Trait Predictions

To assess the usefulness of predicted MIR spectra for 
practical applications, fat, protein, and lactose contents 
in milk were predicted from observed MIR spectra and 
predicted MIR spectra for the modeling data set and 
scenarios. The prediction equations for fat, protein 
and lactose contents had a cross-validation R2 of 0.99, 
0.99, and 0.91, respectively, and a root mean square 
error of prediction of 0.06, 0.04, and 0.06 g/dL of milk, 
respectively. Reference values to build these equations 
came from the predicted phenotypes obtained using the 
Milkoscan FT6000 (i.e., these phenotypes were based 
on the MIR spectra), because no phenotypes were avail-
able from chemical analysis. This explains the high R2 
values obtained for these prediction equations. Traits 
predicted from observed and modeled MIR spectra were 
compared using correlations, descriptive statistics, and 
the root mean square error (RMSE). As a comparison, 
we also directly modeled milk fat, protein, and lactose 
contents using the TDM in Equation [2]. We compared 
correlations between traits predicted from observed 
spectra versus traits predicted from spectra modeled 
from a TDM with correlations between traits predicted 
from observed spectra versus traits modeled directly 
from a TDM. This way, we can compare the accuracy 
of using prediction equations on MIR spectra predicted 
from a TDM with the accuracy of directly modeling 
MIR traits using a TDM.

RESULTS AND DISCUSSION

Preprocessing of Modeling MIR Spectra

Several preprocessing methods exist for MIR data 
(Rinnan et al., 2009). We chose first derivative because 
in our study data were collected with different spec-
trometers over several years and derivative is a useful 
technique to remove baseline variation that may occur 
because of instabilities between instruments and over 

time (Owen, 1995). First-derivative preprocessing made 
data in our study conform more to normality as skew-
ness and excess kurtosis were globally closer to zero 
after derivation (Figure 1; Kim, 2013). Further analyses 
of our data and comparison of models using derived 
and raw spectral data suggested that first derivative 
was a useful pretreatment for our study and improved 
accuracy of results (results not shown). Several authors 
who modeled MIR spectra using TDM previously did 
not precorrect spectral data (e.g., Bittante and Cec-
chinato, 2013; Wang et al., 2016; Zaalberg et al., 2019), 
whereas some precorrected MIR spectra using methods 
such as derivatives (e.g., Belay et al., 2017; Lainé et al., 
2017) or extended multiplicative signal correction (e.g., 
Dagnachew et al., 2013a; Belay et al., 2017). Among 
these authors, Belay et al. (2017) indicated that spec-
tral preprocessing improved prediction accuracy. Some 
authors stated that it is important to test different 
pretreatment methods to make the most advised choice 
and that pretreatment might only improve accuracy for 
some traits (De Marchi et al., 2011; Soyeurt et al., 2011; 
Mineur et al., 2017). This should be explored further.

One advantage of PCA was the reduction of spectral 
variables for modeling to decrease computer opera-
tions. Use of PCA to reduce spectral dimensions was 
also implemented in other studies on MIR spectra (e.g., 
Soyeurt et al., 2010; Dagnachew et al., 2013a,b; Bonfatti 
et al., 2017). We selected a total of 12 PC, representing 
96% of the information (i.e., total variance) contained in 
spectral wavenumbers. Other authors (e.g., Dagnachew 
et al., 2013a; Bonfatti et al., 2017) indicated that even 
less than 1% loss of total variation could lead to loss of 
relevant information. However, in the present study, we 
considered 12 PC as an optimum between dimension 
reduction and model accuracy. Indeed, although 4% of 
the spectral variance was lost, the average correlation 
between observed and predicted spectral wavenumbers 
did not substantially increase when adding extra PC 
[i.e., the correlation increased by only 0.01 and 0.004 
when increasing the number of PC from 12 to 23 (i.e., 
99% of total variance) for modeling and scenarios, 
respectively; Figure 2]. Bonfatti et al. (2017) did not 
mention using spectral pretreatment, in contrast to the 
present study. When using raw spectra, a larger part of 
the variability may be noise and the remaining percent-
ages may be interesting spectral variability. This might 
explain why even 1% loss of spectral variation might 
lead to loss of relevant information.

Variance Components

Figure 3 represents the percentage of total spectral 
variation retained by the model explained by the ge-
netic, permanent environment, HTDr, and residual 
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effects. Genetic and residual effects explained on aver-
age, respectively, 37 and 41% of the total variation for 
79% of the wavenumbers (i.e., from 933 to 1,589 cm−1, 
1,704 to 1,786 cm−1, and 2,777 to 2,981 cm−1), whereas 
permanent environment and HTDr explained on aver-
age 10 and 12% for the same regions, respectively. This 

general pattern was observed in other studies (Wang et 
al., 2016; Lainé et al., 2017).

In the present study, the HTDr effect was the most 
important effect in the spectral regions from 1,790 to 
1,809 cm−1 and 2,553 to 2,773 cm−1. Similarly, in the 
study of Dagnachew et al. (2013a) on dairy goat milk 
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Figure 1. (A) Skewness for each of the 311 selected spectral wavenumbers for the modeling data set. The continuous line represents the raw 
spectra; circles represent the derived spectra. (B) Excess kurtosis for each of the 311 selected spectral wavenumbers for the modeling data set. 
The continuous line represents the raw spectra; circles represent the derived spectra.
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spectra, HTDr also had a high variance ratio between 
2,400 and 2,800 cm−1 and around 1,771 cm−1. Wang et 
al. (2016) observed a lower variance ratio explained by 
the genetic effect around 2,400 to 2,800 cm−1, which 
is similar to the present study. Wang et al. (2016) and 
Lainé et al. (2017) found a lower proportion of variance 
explained by the genetic effect around 1,300 to 1,500 
cm−1, but this was not observed in our study.

Predictions of Spectral Wavenumbers

The average correlation between observed and mod-
eled values of the spectral wavenumbers was 0.85 for the 
modeling data set, the minimum correlation value was 

0.67, and the maximum was 0.95 (Figure 4). Regarding 
the scenarios, on average correlations were the highest 
for scenario 3 and the lowest for scenario 4 (0.62 and 
0.36, respectively), with scenarios 1 and 2 in between 
(0.56 and 0.37, respectively, Table 2). We observed low 
correlations for spectral regions from 1,790 to 1,809 
cm−1 and from 2,553 to 2,773 cm−1 for scenarios 1, 2, 
and 4 (Figure 5). When removing these regions, the 
first scenario (i.e., prediction of future records) had 
the highest average correlation (r = 0.63). Comparing 
this with Figure 3, these results seemed logical because 
the variance was mainly explained by the HTDr ef-
fect in these regions. The high proportion of variance 
explained by HTDr suggests that the wavenumbers are 
influenced by test-day factors, such as daily changes 
of feed, climatic conditions, or laboratory environment. 
Therefore, when the HTDr effect is not known (i.e., 
scenarios 1, 2, and 4), wavenumber predictions for this 
region have low accuracy. According to Socrates (2001), 
these regions are not very associated with main chemi-
cal information such as fat, protein, or lactose content, 
but these could be associated with minor components.

To our knowledge, no other authors studied the 
predictability of spectral wavenumbers, so comparison 
with the existing literature is difficult. However, Dag-
nachew et al. (2013a) showed that for goat milk spectra 
PC scores for future records could be predicted with 
reasonable accuracy (correlations between observed 
and predicted PC scores ranged between 0.48 and 0.75 
for the first 7 PC). In the present study, correlations 
between observed and predicted PC scores for the 12 
retained PC varied from 0.83 to 0.98 for the modeling 
data set. Correlations between observed and predicted 
PC scores could not be calculated for the scenarios 
because observed PC scores were not available as PCA 
was applied on modeling spectra only. The interpreta-
tion of individual spectral wavenumber correlations and 
variance ratio variability is complicated because milk 
MIR spectra represent a combination of many different 
molecules in milk (Soyeurt et al., 2010). Not all wave-
numbers have the same contribution in the prediction 
of specific traits and variation in spectral wavenumbers 
predictions might affect MIR trait predictions different-
ly. For instance, chemical bonds that include nitrogen 
molecules (e.g., N-H, C-N) are specific to protein but 
less interesting to predict milk fat content (Socrates, 
2001). Hence, comparing MIR traits predicted on mod-
eled MIR spectra would be relevant.

Predictions of MIR Traits

One interest of the prediction of MIR traits on the 
modeled spectra was to see if the accuracy did not 
decrease compared with the prediction of spectral 
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Figure 2. Average correlation between observed and predicted 
values for the 311 spectral wavenumbers according to the number of 
principal components selected (A) for the modeling data set and (B) 
for the 4 scenario data sets together.
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wavenumbers and if predicted phenotype values were 
in an acceptable range. The left side of Table 3 presents 
correlations between predictions of milk fat, protein, 
and lactose contents from observed or modeled spectra. 
Correlations were relatively high for the modeling data 
set as they were above 0.80. Regarding the scenarios, 
the first one had the highest correlation values for fat 
and lactose content (0.63 for both traits), and scenario 
3 had the highest values for protein content (0.73). Sce-
narios 2 and 4 had the lowest values for the 3 milk com-
ponents (i.e., 0.36, 0.62, 0.46 and 0.40, 0.64, 0.32 for fat, 
protein, and lactose contents, respectively). Compared 
with fat and lactose contents, correlations for protein 
content showed a lower overall variation for the 4 sce-

narios. Globally, correlations for fat, protein, and lac-
tose contents varied in accordance with the evolution of 
correlations for spectral wavenumbers in the regions 933 
to 1,589 cm−1, 1,704 to 1,786 cm−1, and 2,777 to 2,981 
cm−1 (Figure 5). These spectral regions are associated 
with molecular functional groups belonging to major 
milk components like lipids, proteins, or carbohydrates 
(Socrates, 2001; Iñón et al., 2004; Dagnachew et al., 
2013a). Milk fat is mainly associated with 2 spectral 
regions where the carbon–hydrogen groups (C–H) and 
the carbonyl groups (C = O) of milk fat absorb, that is 
to say at 2,873 and 1,747 cm−1, respectively (Socrates, 
2001; Iñón et al., 2004). The region around 1,100 cm−1 
is associated with lactose content (Picque et al., 1993). 
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Figure 3. Percentage of total variance of spectral wavenumbers retained by the model explained by genetic, permanent environmental, herd-
test-day, and residual effects.

Figure 4. Correlations between observed and predicted values for the 311 spectral wavenumbers for the modeling data set. Min = minimum; 
Max = maximum.
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The MIR regions located between 1,200 to 1,450 cm−1 
and 1,500 to 1,600 cm−1 correspond to protein content 
(Sivakesava and Irudayaraj, 2002). Superior accuracy 
for wavenumbers and MIR traits predictions for sce-
nario 1 and 3 were justified by the higher number of 
known effects in the model compared with scenarios 2 
and 4. We expected that scenario 4 would produce the 
least accurate results given the little number of known 
effects included in the model. However, we noticed 
that scenario 4 marginally outperformed scenario 2 for 
some wavenumbers and for the prediction of fat and 
protein contents, even though HTY and HTM effects 
were unknown. This might partly be the consequence of 
the different herds and cows and the different number 
of observations between these 2 scenarios. Indeed, sce-
nario 4 was composed of different cows and herds from 
those in the modeling set. In contrast, scenarios 1, 2, 
and 3 were partially connected to the modeling set and 
between them because they were composed of similar 
herds (i.e., known HTY and HTM), though they were 
of different size. Unfortunately, we are unable to verify 
this hypothesis with certainty due to the structure of 
the data sets.

For the 3 studied milk components, comparing the 
left and right parts of Table 3, correlations between 
traits predicted from observed spectra versus traits 
predicted from spectra modeled from a TDM were very 
similar to correlations between traits predicted from 
observed spectra versus traits predicted directly from a 
TDM. This implies that, for these traits, using predic-

tion equations on MIR spectra predicted from a TDM 
did as good as modeling traits directly using a TDM. 
For future research, it might also be useful to consider 
other traits such as fine milk components that are less 
correlated with the major sources of variation of the 
spectra (Bonfatti et al., 2017).

Table 4 displays mean values and standard deviations 
for fat, protein, and lactose contents predicted from 
observed or modeled spectra and RMSE between these 
traits predicted from observed versus modeled spectra. 
For the modeling data set and the 4 scenarios, mean 
values predicted from modeled spectra were very simi-
lar to mean values predicted from observed spectra, but 
standard deviations were smaller. It shows the ability 
of the model to predict values in a similar range as 
traits predicted from observed spectra on average (i.e., 
close to reality), but with lower variability. In all situ-
ations, the RMSE was the highest for milk fat content, 
followed by protein content and then lactose content. 
Values for RMSE were in similar ranges compared with 
the standard deviation for the traits predicted from the 
observed spectra for the modeling set. This indicates 
that the error is relatively large compared with the 
expected variation of the observed traits in the popula-
tion. The RMSE was slightly lower for the first scenario 
(i.e., prediction of future records) compared with the 
3 other cases, in line with globally higher correlations 
(Table 3). Even when knowing very few information 
about the cow like for scenario 4 (i.e., only genetic and 
DIM effects were known), correlations for the 3 studied 
milk traits were still higher than zero and the RMSE 
did not increase sharply (Tables 3 and 4).

Practical Use for Herd Management

The objective of this study was to test the ability 
of a test-day mixed model to predict milk MIR spec-
tra with the perspective of herd management. Today 
numerous traits are predicted from milk MIR spectra 
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Table 2. Descriptive statistics of correlations between observed and 
predicted values for the 311 spectral wavenumbers for the 4 scenarios

Scenario Mean Median Minimum Maximum SD

1 0.56 0.62 0.06 0.72 0.15
2 0.37 0.37 0.00 0.61 0.13
3 0.62 0.59 0.30 0.89 0.12
4 0.36 0.38 0.05 0.63 0.14

Table 3. Left side: correlations between fat, protein, and lactose contents (g/dL of milk) predicted from 
observed spectra versus from spectra modeled from a test-day model (TDM); right side: correlations between 
fat, protein, and lactose contents (g/dL of milk) predicted from observed spectra versus modeled directly using 
a TDM1

Item

Traits predicted from observed spectra vs. 
from modeled spectra from TDM

 

Traits predicted from observed spectra vs. 
modeled directly from TDM

Fat Protein Lactose Fat Protein Lactose

Modeling set 0.83 0.89 0.83   0.83 0.90 0.86
Scenario 1 0.63 0.68 0.63   0.63 0.68 0.59
Scenario 2 0.36 0.62 0.46   0.37 0.60 0.37
Scenario 3 0.53 0.73 0.46   0.53 0.72 0.46
Scenario 4 0.40 0.64 0.32   0.40 0.64 0.31
1Results are presented for the modeling data set and the 4 scenarios.
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(Gengler et al., 2016). One advantage of modeling the 
MIR spectrum compared with modeling MIR traits 
directly is that a limited number of models are required 
(i.e., one for each PC) instead of developing one model 
separately for each of the existing MIR traits. Then 
the existing calibration equations for MIR traits can 
be applied on the modeled spectra to predict the differ-
ent phenotypes without additional calculations. Hence, 
it reduces the workload associated with the develop-
ment of several models for the numerous MIR traits, 
as well as computation time and resources [e.g., there 
is no need to estimate variance components (REML) 
for each trait, which is computationally demanding]. 
Also, the information contained in the MIR spectrum 
is richer than the information in a few predicted traits 
and could be used as such. The information result-
ing from MIR spectra modeling could benefit farmers 
with their cow and herd management in many ways. 
Any unexpected variation from a usual pattern may 

indicate a problem. Consequently, the difference be-
tween observed and modeled (i.e., expected) spectra 
and resulting predicted MIR traits could be a way to 
detect problems such as metabolic disorders, feeding 
problems, or mastitis at the cow or herd level. It would 
help saving medical treatment costs and avoid loss of 
money caused by decreasing productivity or degrada-
tion of health. For example, changes in milk fat and 
protein ratio compared with an expected pattern can 
be used to detect the risk of metabolic disorders in 
lactating cows such as ketosis (Duffield et al., 1997), or 
unexpected changes in milk lactose, protein, and miner-
als content can be use to detect mastitis (Hamann and 
Krömker, 1997). In addition, MIR spectra modeling 
could be used for simulations through adjustments of 
factors in the model (e.g., to predict the results of diet 
or genetic changes), for prediction of missing or future 
records or prediction of heifer productive potential. 
Also, as suggested by Mayeres et al. (2004), Koivula et 

Delhez et al.: PREDICTING MILK MID-INFRARED SPECTRA

Table 4. Mean (SD in parentheses) for fat, protein, and lactose contents (g/dL of milk) predicted from observed and modeled spectra and root 
mean square error (RMSE) between fat, protein, and lactose contents predicted from observed versus modeled spectra for the modeling data 
set and the 4 scenarios

Item

Fat

 

Protein

 

Lactose

Mean obs. 
spectra1

Mean pred. 
spectra2 RMSE

Mean obs. 
spectra

Mean pred. 
spectra RMSE

Mean obs. 
spectra

Mean pred. 
spectra RMSE

Modeling set 4.01 (0.68) 4.01 (0.53) 0.38 3.41 (0.38) 3.42 (0.32) 0.17 4.83 (0.17) 4.82 (0.14) 0.10
Scenario 1 4.30 (0.70) 4.22 (0.46) 0.55 3.68 (0.36) 3.67 (0.26) 0.27 4.72 (0.17) 4.75 (0.12) 0.14
Scenario 2 3.94 (0.64) 3.89 (0.43) 0.63 3.36 (0.33) 3.34 (0.28) 0.27 4.77 (0.17) 4.80 (0.11) 0.16
Scenario 3 4.00 (0.74) 3.96 (0.50) 0.64 3.35 (0.42) 3.34 (0.33) 0.29 4.84 (0.19) 4.85 (0.11) 0.17
Scenario 4 4.01 (0.71) 4.04 (0.31) 0.65 3.39 (0.40) 3.44 (0.25) 0.31 4.79 (0.18) 4.79 (0.06) 0.17
1Mean of the trait predicted from the observed spectra.
2Mean of the trait predicted from the modeled spectra.

Figure 5. Correlations between observed and predicted values for the 311 spectral wavenumbers for the 4 scenarios.
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al. (2007), and Bastin et al. (2009), studying any devia-
tions in the solutions of the HTDr effect when running 
the model after each milk recording would enable the 
identification of herd-specific phenomena and manage-
ment problems such as feeding problem or seasonal dif-
ficulties. Following further research on the topic, also 
to reach sufficient accuracy, MIR spectra modeling and 
resulting tools could be implemented in practice into 
official milk recording systems.

The results presented in this study showed that the 
model had moderate accuracy. Consequently, its use 
in the current state would be limited for instance for 
imputation of missing data or rough estimations for 
simulations when precise data are not necessary. How-
ever, several improvements of the studied model are 
possible, and needed, to use it for more precise applica-
tions such as the detection of cow or herd problems. 
Adding extra effects in the model such as the age of 
the cow or the gestation stage could be necessary, but 
such data are not always easily available for all cows 
and herds. Besides, the studied model focused only on 
first-lactation cows, but in a multi-lactation model, 
the herd effects and permanent environmental effects 
would be more precise as a consequence of having more 
individual data. Extending the model to a random 
regression model (e.g., using Legendre polynomials) 
might also improve predictions. There is also a need 
to explore further if capturing more spectral variation 
or more diverse variation would improve the accuracy, 
for instance using alternative selection of PC or inves-
tigating other methods for the reduction of spectral 
variables. Moreover, utilization of co-variance between 
PC in REML and BLUP though multi-trait analysis 
would possibly improve the accuracy. Even though PC 
are phenotypically orthogonal, they have genetic, per-
manent environmental, HTDr, and residual co-variance 
structures (Dagnachew et al., 2013a,b; Bonfatti et al., 
2017; Belay et al., 2017). However, such multi-trait 
models are currently very computationally demanding 
on large data sets and could impede the implementa-
tion, which is a reason why we preferred single-trait 
models in this study. All these possible improvements 
need to be elaborated further, also to avoid limitations 
of the practical use of the model.

CONCLUSIONS

This study demonstrated the moderate ability to pre-
dict milk MIR spectra using a test-day mixed model. 
The prediction accuracy varied for the different spectral 
wavenumbers and depended on the effects known in 
different situations. This influenced the prediction ac-
curacy of related MIR traits. More research is required 

to improve the accuracy of predictions for potential 
promising applications for dairy herd management.
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